984
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geometric nonlinear analysis of large rotation behavior of a curved SWCNT

, &
Pages 218-231 | Received 17 Jan 2022, Accepted 25 Mar 2022, Published online: 07 Apr 2022

References

  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58.
  • Kapadia RS, Louie BM, Bandaru PR. The influence of carbon nanotube aspect ratio on thermal conductivity enhancement in nanotube-Polymer composite. J Heat Transfer. 2004;136(1):011303.
  • Shen JT, Buschhorn ST, De Hosson JTM, et al. Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites. Compos Sci Technol. 2015;115(8):1–8.
  • Shehzad K, Dang ZM, Ahmad MN, et al. Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites. Carbon. 2013;54:105–112.
  • Hu N, Fukunaga H, Atobe S, et al. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors. 2011;11(11):10691–10723.
  • Alexipoulos ND, Bartholome C, Poulin P, et al. Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Compos Sci Technol. 2010;70(2):260–271.
  • Al-Rub RKA, Ashour AI, Tyson BM. On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Constr Build Mater. 2012;35:647–655.
  • Freihofer G, Liang F, Mohan B, et al. Ex-situ raman spectroscopy to optimize the manufacturing process for a structural MWNT nanocomposite. Int J Smart Nano Mater. 2012;3(4):309–320.
  • Loh K, Nagarajaiah S. Innovative developments of advanced multifunctional nanocomposites in civil and structural engineering. Cambridge UK: Elsevier Science & Technology; 2016.
  • Collins PG, Bradley KB, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science. 2000;287(5459):1801–1804.
  • Akita S, Nakayama Y, Mizooka S, et al. Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Applied Physics Letter. 2001;79(11):1691–1693
  • Dequesnes M, Rotkin SV, Aluru NR. Calculation of pull-in voltages for carbon nanotube-based nanoelectromechanical switches. Nanotechnology. 2002;13(1):120–131.
  • Harris PJ Carbon nanotube science synthesis, properties, and applications, 2009. Cambridge University Press, Cambridge UK.
  • Hertel T, Walkup RE, Avouris P. Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B. 1998;58(20):13870–13878.
  • Peng S, Cho K. Chemical control of nanotube electronics. Nanotechnology. 2000;11(2):57–60.
  • Li Z, Dharap P, Nagarajaiah S, et al. Nonlinear analysis of a SWCNT over a bundle of nanotubes. Int J Solids Struct. 2004;41(24–25):6925–6936.
  • Meek JL, Qiang X. A study on the instability problem for 2D-frames. Computer method in applied mechanics and engineering. 1996;136(3):347–361
  • Hsiao KM, Lin JY, Lin WY. A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams. Computers methods in applied Mechanical engineering. 1999;169(1–2):1–18
  • Hsiao KM. Corotational total Lagrangian formulation for three-dimensional beam element. AIAA. 1992;30(3):797–804.
  • Belytschko T, Liu WK, Moran B. Nonlinear finite elements for continua and structures. England: John Wiley & Sons Ltd., West Sussex; 2000.
  • Battini JM. Co-rotational beam elements in instability problems. technical reports from Royal Institute of Technology. Department of Mechanics. Stockholm Sweden; 2002. p. SE–100 44.
  • Criseld MA. Nonlinear finite element analysis of solids and structures. Vol. 1. Chichester England: Essentials, Wiley; 1991.
  • Gruttmann F, Sauer R, Wagner W. A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections. Computational Methods in applied mechanics and engineering. 1998;160(3–4):383–400
  • Liang K, Ruess M, Abdalla M. Co-rotational finite element formulation used in the Koiter-Newton method for nonlinear buckling analyses. 2016;Finite Element in Analyses and Design. 116:38–54.
  • Chen HH, Lin WY, Hsiao KM. Co-rotational finite element formulation for thin-walled beams with generic open section. Computational Methods in applied mechanics and engineering. 2006;195(19–22):2334–2370
  • Yakobson BI, Couchman LS. Persistence length and nanomechanics of random bundles of nanotubes. J Nanopart Res. 2006;8(1):105–110.
  • Yakobson BI, Couchman LS. Carbon nanotubes: supramolecular mechanics. In S, Et. Al JA, editors. Encyclopedias of nanoscience and nanotechnology, Marcel Dekker, New York. New York, USA: Marcel Dekker Inc. 2004. p. 587–601.
  • Nikiforov I, Zhang D-B, James RD, et al. Wavelike rippling in multiwalled carbon nanotubes under pure bending. Appl Phys Lett. 2010;96(12):123107. 3pages.
  • Israelachvili J. Intermolecular and surface forces. 2nd edition ed. Salt Lake City, Utah, USA: Academic press; 1992.
  • Kudin KN, Scuseria GE, Yakobson BI. C2 F,BN, and C nanoshell elasticity from ab initio computations. Phys Rev B. 2001;64(23):235406/10.
  • Zappino E, Carrera E. Advanced modeling of embedded piezo-electric transducers for the health-monitoring of layered structures. Int J Smart Nano Mater. 2020;11(4):325–342.
  • Wang Y, Semler MR, Ostanin I, et al. Rings and rackets from single-wall carbon nanotubes: manifestations of mesoscale mechanics. Soft Matter. 2014;10(43):8635–8640.
  • Drozdov G, Ostanin I, Xu H, et al. Densification of single-walled carbon nanotube films: mesoscopic distinct element method simulations and experimental validation. J Appl Phys. 2020;128(18):184701.