1,983
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Regulation mechanism for the formation and microwave absorbing performance of CNT/CoFe-MOF derived hierarchical composite

, &
Pages 273-292 | Received 25 Mar 2022, Accepted 21 Apr 2022, Published online: 10 May 2022

References

  • Cao J, Yao H, Pang Y, et al. Dual-band piezoelectric artificial structure for very low frequency mechanical antenna. Adv Compos Hybrid Mater. 2022;5(1):410–418.
  • Singh SK, Sharan T, Singh AK. Enhancing the axial ratio bandwidth of circularly polarized open ground slot CPW-Fed antenna for multiband wireless communications. Eng Sci. 2022;17:274–284.
  • Kumar P, Ali T, M.m MP. Highly isolated ultrawideband multiple input and multiple output antenna for wireless applications. Eng Sci. 2022;17:83–90.
  • Xu J, Cao J, Guo M, et al. Metamaterial mechanical antenna for very low frequency wireless communication. Adv Compos Hybrid Mater. 2021;4(3):761–767.
  • Dilli R, L M, C R, et al. Ultra-massive MIMO technologies for 6G wireless networks. Eng Sci Eng Sci. 2021;16:308–318.
  • Cai Z, Su L, Wang H, et al. Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 degrees C. ACS Appl Mater Interfaces. 2021;13(14):16704–16712.
  • Liang -L-L, Liu Z, Xie L-J, et al. Bamboo-like N-doped carbon tubes encapsulated CoNi nanospheres towards efficient and anticorrosive microwave absorbents. Carbon. 2021;171:142–153.
  • Wu L, Wu F, Sun Q, et al. A TTF–TCNQ complex: an organic charge-transfer system with extraordinary electromagnetic response behavior. J Mater Chem C. 2021;9(9):3316–3323.
  • Yang Z, Guo H, You W, et al. Compressible and flexible PPy@MoS2/C microwave absorption foam with strong dielectric polarization from 2D semiconductor intermediate sandwich structure. Nanoscale. 2021;13(9):5115–5124.
  • Wang R, Li S, Hu P, et al. Densification behavior and microstructure evolution of Mo nanocrystals by microwave sintering. ES Mater Manufact. 2021;13:97–105.
  • Yan X, Liu J, Khan MA, et al. Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with lowly loaded carbon nanotubes. ES Mater Manufact. 2020;9:21–33.
  • Hou C, Hou J, Zhang H, et al. Facile synthesis of LiMn0.75Fe0.25PO4/C nanocomposite cathode materials of lithium-ion batteries through microwave sintering. Eng Sci. 2020;11:36–43.
  • Tian J, Shao Q, Zhao J, et al. Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of rhodamine B. J Colloid Interface Sci. 2019;541:18–29.
  • Sun L, Shao Q, Zhang Y, et al. N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue. J Colloid Interface Sci. 2020;565:142–155.
  • Zhang F, Cheng W, Yu Z, et al. Microwave hydrothermally synthesized WO3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B. Adv Compos Hybrid Mater. 2021;4(4):1330–1342.
  • Yi P, Yao Z, Zhou J, et al. Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based MOFs towards lightweight and efficient microwave absorbers. Nanoscale. 2021;13(5):3119–3135.
  • Chen R, Yu R, Pei X, et al. Interface design of carbon filler/polymer composites for electromagnetic interference shielding. New J Chem. 2021;45(19):8370–8385.
  • Ma Y, Quan B, Zeng Z, et al. Multiple interface-induced evolution of electromagnetic patterns for efficient microwave absorption at low thickness. Inorg Chem Front. 2021;8(7):1810–1818.
  • Hu H, Zheng Y, Ren K, et al. Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. Nanoscale. 2021;13(4):2324–2332.
  • Miao P, Yang J, Liu Y, et al. Emerging perovskite electromagnetic wave absorbers from Bi-Metal–organic frameworks. Cryst Growth Des. 2020;20(7):4818–4826.
  • Lu Y, Zhang S, He M, et al. 3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding. Carbon. 2021;178:413–435.
  • Gao X, Wang B, Wang K, et al. Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J Colloid Interface Sci. 2021;583:510–521.
  • Li X, Zhang M, You WB, et al. Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray drying method. ACS Appl Mater Interfaces. 2020;12(15):18138–18147.
  • Wang H, Meng F, Huang F, et al. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl Mater Interfaces. 2019;11(12):12142–12153.
  • Chen Y, Zhang H-B, Yang Y, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv Funct Mater. 2016;26(3):447–455.
  • Zhang C, Chen G, Zhang R, et al. Charge modulation of CNTs-based conductive network for oxygen reduction reaction and microwave absorption. Carbon. 2021;178:310–319.
  • Lu -M-M, Cao W-Q, Shi H-L, et al. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J Mater Chem A. 2014;2(27):10540–10547.
  • Yang H, Zhang X, Xiong Z, et al. Cu2O@nanoporous carbon composites derived from Cu-based MOFs with ultrabroad-bandwidth electromagnetic wave absorbing performance. Ceram Int. 2021;47(2):2155–2164.
  • Wang Y-L, Yang S-H, Wang H-Y, et al. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon. 2020;167:485–494.
  • Huang L, Chen C, Huang X, et al. Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos Part B Eng. 2019;164:583–589.
  • Xu X, Ran F, Fan Z, et al. Cactus-Inspired bimetallic metal-organic framework-derived 1D-2D Hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl Mater Interfaces. 2019;11(14):13564–13573.
  • Xu X, Ran F, Lai H, et al. In situ confined bimetallic metal-organic framework derived nanostructure within 3d interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl Mater Interfaces. 2019;11(39):35999–36009.
  • Liu Y, Xin N, Yang Q, et al. 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor. J Colloid Interface Sci. 2021;583:288–298.
  • Liu Y, Li G, Guo Y, et al. Flexible and binder-free hierarchical porous carbon film for supercapacitor electrodes derived from MOFs/CNT. ACS Appl Mater Interfaces. 2017;9(16):14043–14050.
  • Wang J, Yang J, Yang J, et al. Design of novel CNT/RGO/ZIF-8 ternary hybrid structure for lightweight and highly effective microwave absorption. Nanotechnology. 2020;41(31):414001.
  • Meng R, Zhang T, Liu X, et al. Graphene oxide-assisted Co-sintering synthesis of carbon nanotubes with enhanced electromagnetic wave absorption performance. Carbon. 2021;185:186–197.
  • Diao J, Cai Z, Xia L, et al. High-performance microwave absorption of 3D Bi2Te2.7Se0.3/Graphene foam. Carbon. 2021;183:702–710.
  • Zhou J, He J, Wang T, et al. Design of mesostructured γ-Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications. J Alloys Compd. 2011;509(32):8211–8214.
  • Li M, Chen S, Li B, et al. In situ growing N and O co-doped helical carbon nanotubes encapsulated with CoFe alloy as tri-functional electrocatalyst applied in Zn–Air batteries driving water splitting. Electrochim Acta. 2021;388:138587.
  • Liu Y, Tao J, Liu Y, et al. Regulating the mechanical properties and electrical conductivity of CNTs/Cu composites by tailoring nano-sized TiC on the surface of intact CNTs. Carbon. 2021;185:428–441.
  • Tu C, Peng A, Zhang Z, et al. Surface-seeding secondary growth for CoO@Co9S8 P-N heterojunction hollow nanocube encapsulated into graphene as superior anode toward lithium ion storage. Chem Eng J. 2021;425:130648.
  • Aich D, Saha S, Kamilya T. Synthesis and characterization of star shaped α-Fe2O3/Au nanocomposites. Materials Today: Proceedings 2021, 43, 1154–1159.
  • Guo Y, Zhou Y, Nan Y, et al. Ni-based nanoparticle-embedded N-Doped carbon nanohorns derived from double core-shell CNH@PDA@Ni-MOFs for oxygen electrocatalysis. ACS Appl Mater Interfaces. 2020;12(11):12743–12754.
  • Chang L, Wang K, Huang L-A, et al. Hierarchical CoO microflower film with excellent electrochemical lithium/sodium storage performance. J Mater Chem A. 2017;5(39):20892–20902.
  • Li W, Li X, Liu J, et al. Coating of wood with Fe2O3-Decorated carbon nanotubes by one-step combustion for efficient solar steam generation. ACS Appl Mater Interfaces. 2021;13(19):22845–22854.
  • Wang L, Bai X, Wen B, et al. Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos Part B Eng. 2019;166:464–471.
  • Wang L, Wen B, Bai X, et al. NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl Nano Mater. 2019;2(12):7827–7838.
  • Wu M, Zheng Y, Liang X, et al. MoS2 nanostructures with the 1T phase for electromagnetic wave absorption. ACS Appl Nano Mater. 2021;4(10):11042–11051.
  • Liu W, Tan S, Yang Z, et al. Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon. 2018;138:143–153.
  • Zangari A. A meta-analysis of coordinate systems and bibliography of their use on Pluto from Charon’s discovery to the present day. Icarus. 2015;246:93–145.
  • Du M. Frame-indifference of cross products, rotations, and the permutation tensor. Theor Appl Mech Lett. 2020;10(2):116–119.
  • Zhu G, Yang X, Zhu H. Reduction of flow oscillation of natural circulation in non-inertial system. Int J Heat Mass Transfer. 2019;139:720–724.
  • Ahmad SN, Zaharim WN, Sulaiman S, et al. Density functional theory studies of the electronic structure and muon hyperfine interaction in [Au25(SR)18](0) and [Au25(SeR)18](0) nanoclusters. ACS omega. 2020;5(51):33253–33261.
  • Mali G, Mazaj M. Hyperfine coupling constants in cu-based crystalline compounds: solid-state NMR spectroscopy and first-principles calculations with isolated-cluster and extended periodic-lattice models. J Phys Chem C. 2021;125(8):4655–4664.
  • Chen S, Li K, Deng J, et al. High-order nonlinear spin-orbit interaction on plasmonic metasurfaces. Nano Lett. 2020;20(12):8549–8555.
  • Tsesses S, Cohen K, Ostrovsky E, et al. Spin-orbit interaction of light in plasmonic lattices. Nano Lett. 2019;19(6):4010–4016.
  • Wang Y, Wang P, Du Z, et al. Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv Compos Hybrid Mater. 2021;5(1):209–219.
  • Guo Y, Wang D, Bai T, et al. Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv Compos Hybrid Mater. 2021;4(3):602–613.
  • Li Y, Qing Y, Li W, et al. Novel Magnéli Ti4O7/Ni/poly(vinylidene fluoride) hybrids for high-performance electromagnetic wave absorption. Adv Compos Hybrid Mater. 2021;4(4):1027–1038.
  • Cheng H, Lu Z, Gao Q, et al. PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci. 2021; 16;331–340.
  • Wang L, Guan H, Hu J, et al. Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber. J Alloys Compd. 2019;803:1119–1126.
  • Lu Y, Wang Y, Li H, et al. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl Mater Interfaces. 2015;7(24):13604–13611.