1,738
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A comparison study on polymeric nanocomposite foams with various carbon nanoparticles: adjusting radiation time and effect on electrical behavior and microcellular structure

, , , , , , , & show all
Pages 504-528 | Received 11 Apr 2022, Accepted 21 Jul 2022, Published online: 31 Jul 2022

References

  • Aghvami-Panah M, Panahi-Sarmad M, Seraji AA, et al. LDPE/MWCNT and LDPE/MWCNT/UHMWPE self-reinforced fiber-composite foams prepared via supercritical CO2: a microstructure-engineering property perspective. J Supercrit Fluids. 2021;174:105248.
  • Panahi-Sarmad M, Noroozi M, and Xiao X, et al. Recent advances in graphene-based polymer nanocomposites and foams for electromagnetic interference shielding applications. Ind Eng Chem Res. 2022; 61: 4 ;acs.iecr.1c04116.
  • Xiao X, Huang X, Wang A, et al. Subtle devising of electro-induced shape memory behavior for cellulose/graphene aerogel nanocomposite. Carbohydr Polym. 2022;281:119042.
  • Zhang D, Sun M, Liu X, et al. Off-axis bending behaviors and failure characterization of 3D woven composites. Compos Struct. 2019;208:45–55.
  • Seraji AA, Aghvami-Panah M, Shams-Ghahfarokhi F. Evaluation of ultimate engineering properties of polytetrafluoroethylene/carbon-aerogel/glass fiber porous composite. Colloids Surf A Physicochem Eng Asp. 2022;647:128975.
  • Cai J, Murugadoss V, Jiang J, et al. Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv Compos Hybrid Mater. 2022;1–10.doi:10.1007/s42114-022-00460-z.
  • Jing X, Li Y, and Zhu J, et al. Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater. 2022 5 ;1–10.
  • Stephen C, Shivamurthy B, Mohan M, et al. Low velocity impact behavior of fabric reinforced polymer composites–A review. Eng Sci. 2022;18:75–97.
  • Luo J, Yin D, Yu K, et al. Facile fabrication of PBS/CNTs nanocomposite foam for electromagnetic interference shielding. Chem Phys Chem. 2022;23(4). doi:10.1002/cphc.202100778
  • Li S, Dong K, Li R, et al. Capacitive pressure sensor inlaid a porous dielectric layer of superelastic polydimethylsiloxane in conductive fabrics for detection of human motions. Sens Actuators A Phys. 2020;312:112106.
  • Li S, Gu Y, Wu G, et al. A flexible piezoresistive sensor with highly elastic weave pattern for motion detection. Smart Mater Struct. 2019;28(3):035020.
  • Lin L, Wang L, Li B, et al. Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem Eng J. 2020;385:123391.
  • Li S, Xiao X, Hu J, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring. ACS Appl Electron Mater. 2020;2(8):2282–2300.
  • Gu J, Zhang X, Duan H, et al. A hygro-thermo-mechanical constitutive model for shape memory polymers filled with nano-carbon powder. Int J Smart Nano Mater. 2021;12(3):286–306.
  • Wang P, Song T, Abo-Dief HM, et al. Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene–vinyl acetate copolymer nanocomposites. Adv Compos Hybrid Mater 2022:00489.
  • Chen L, Rende D, Schadler LS, et al. Polymer nanocomposite foams. J Mater Chem A. 2013;1(12):3837–3850.
  • Xiao W, Liao X, Li S, et al. The distinctive nucleation of polystyrene composites with differently shaped carbon-based nanoparticles as nucleating agent in the supercritical CO 2 foaming process. Polym Int. 2018;67(11):1488–1501.
  • Hung P, Lau KT, Guo Q, et al. Tailoring specific properties of polymer-based composites by using graphene and its associated compounds. Int J Smart Nano Mater. 2020;11(2):173–189.
  • Wang M, Galpaya D, Lai ZB, et al. Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites. Int J Smart Nano Mater. 2014;5(2):123–132.
  • Okolieocha C, Beckert F, Herling M, et al. Preparation of microcellular low-density PMMA nanocomposite foams: influence of different fillers on the mechanical, rheological and cell morphological properties. Compos Sci Technol. 2015;118:108–116.
  • Ameli A, Nofar M, Park CB. Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon. 2014;71:206–217.
  • Shahbazi M, Aghvami‐Panah M, and Panahi‐Sarmad M, et al. Fabricating bimodal microcellular structure in polystyrene/carbon nanotube/glass‐fiber hybrid nanocomposite foam by microwave‐assisted heating: a proof‐of‐concept study. J Appl Polym Sci. 2022; 52125 .
  • Wang Z, Yang X, Wang Q, et al. Epoxy resin nanocomposites reinforced with ionized liquid stabilized carbon nanotubes. Int J Smart Nano Mater. 2011;2(3):176–193.
  • Kashi S, Gupta RK, Kao N, et al. Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices. J Mater Sci Technol. 2018;34(6):1026–1034.
  • Kuronuma Y, Takeda T, Shindo Y, et al. Electrical resistance-based strain sensing in carbon nanotube/polymer composites under tension: analytical modeling and experiments. Compos Sci Technol. 2012;72(14):1678–1682.
  • Li S, Li R, Gonzalez O, et al. Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection. Compos Sci Technol. 2021;203:108617.
  • Ameli A, Jung PU, Park CB. Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon N Y. 2013;60:379–391.
  • Zhao B, Wang R, Li Y, et al. Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J Mater Chem C. 2020;8(22):7401–7410.
  • Zakiyan SE, Azizi H, Ghasemi I. Effect of cell morphology on electrical properties and electromagnetic interference shielding of graphene-poly(methyl methacrylate) microcellular foams. Compos Sci Technol. 2018;157:217–227.
  • Panahi-Sarmad M, Noroozi M, Abrisham M, et al. A comprehensive review on carbon-based polymer nanocomposite foams as electromagnetic interference shields and piezoresistive sensors. ACS Appl Electron Mater. 2020;2(8):2318–2350.
  • Lee S-T, and Park CB. Foam extrusion: principles and practice. Routledge: CRC press; 2014.
  • Lee LJ, Zeng C, Cao X, et al. Polymer nanocomposite foams. Compos Sci Technol. 2005;65:2344–2363.
  • Feng JJ, Bertelo CA. Prediction of bubble growth and size distribution in polymer foaming based on a new heterogeneous nucleation model. J Rheol (N Y N Y). 2004;48(2):439–462.
  • Sorrentino L, Aurilia M, Iannace S. Polymeric foams from high-performance thermoplastics. Adv Polym Technol. 2011;30(3):234–243.
  • Matuana LM, Diaz CA. Study of cell nucleation in microcellular poly(lactic acid) foamed with supercritical CO 2 through a continuous-extrusion process. Ind Eng Chem Res. 2010;49(5):2186–2193.
  • Park CB, Suh NP. Filamentary extrusion of microcellular polymers using a rapid decompressive element. Polym Eng Sci. 1996;36(1):34–48.
  • Park CB, Baldwin DF, Suh NP. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym Eng Sci. 1995;35(5):432–440.
  • Drobny JG. Handbook of Thermoplastic Elastomers Second Edition. A volume in Plastics Design Library: Elsevier; 2014; 978-0-323-22136-8. https://doi.org/10.1016/C2013-0-00140-5
  • Zhang H, Zhang G, Gao Q, et al. Electrically electromagnetic interference shielding microcellular composite foams with 3D hierarchical graphene-carbon nanotube hybrids. Compos Part A Appl Sci Manuf. 2020;130:105773.
  • Zhao B, Zhao C, Hamidinejad M, et al. Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. J Mater Chem C. 2018;6(38):10292–10300.
  • Zhi X, Liu J, Zhang H-B, et al. Simultaneous enhancements in electrical conductivity and toughness of selectively foamed polycarbonate/polystyrene/carbon nanotube microcellular foams. Compos Part B Eng. 2018;143:161–167.
  • Hamidinejad M, Zhao B, Chu RKM, et al. Ultralight microcellular polymer-graphene nanoplatelet foams with enhanced dielectric performance. ACS Appl Mater Interfaces. 2018;10(23):19987–19998.
  • Feng D, Liu P, Wang Q. Selective microwave sintering to prepare multifunctional poly (ether imide) bead foams based on segregated carbon nanotube conductive network. Ind Eng Chem Res. 2020;59(13):5838–5847.
  • de la Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev. 2005;34(2):164–178.
  • Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. Appli Phy Rev. 2013: 061301.
  • Menéndez JA, Arenillas A, Fidalgo B, et al. Microwave heating processes involving carbon materials. Fuel Process Technol. 2010;91(1):1–8.
  • Rezvanpanah E, Ghaffarian Anbaran SR, Di Maio E. Carbon nanotubes in microwave foaming of thermoplastics. Carbon N Y. 2017;125:32–38.
  • Rybakov KI, Semenov VE. Micromave heating of electrically conductive materials. Radiophys Quantum Electron. 2005;48(10–11):888–895
  • Vazquez E, Prato M. Carbon nanotubes and microwaves : Interactions, responses, and applications. ACS Nano. 2009;3(12):3819–3824.
  • Yan X, Liu J, Khan MA, et al. Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with lowly loaded carbon nanotubes. ES Mater Manuf. 2020;9. 21–33.
  • Wang R, Li S, Hu P, et al. Densification behavior and microstructure evolution of Mo manocrystals by microwave sintering. ES Mater Manuf. 2021;13:97–105.
  • Kim KH, Cho KM, Kim DW, et al. The role of layer-controlled graphene for tunable microwave heating and its applications to the synthesis of inorganic thin films. ACS Appl Mater Interfaces. 2016;8(8):5556–5562.
  • Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. Appl Phys. 2012;111(6):061301.
  • Aghvami‐Panah M, Jamalpour S, Ghaffarian SR. Microwave‐assisted foaming of polystyrene filled with carbon black; effect of filler content on foamability. SPE Polym. 2021;2(1):86–94
  • Galindo B, Benedito A, Gimenez E, et al. Comparative study between the microwave heating efficiency of carbon nanotubes versus multilayer graphene in polypropylene nanocomposites. Compos Part B Eng. 2016;98:330–338.
  • Khurram AA, Rakha SA, Ali N, et al. Comparison of the dielectric response of hybrid polymer composites filled with one-dimensional and two-dimensional carbonaceous materials in the microwave range. Adv Polym Technol. 2018;37(3):890–897.
  • Liang L, Li Q, Yan X, et al. Multifunctional magnetic Ti 3 C 2 T x MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano. 2021;15(4):6622–6632.
  • Zhang Y, Gu J. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022;14(1):89.
  • Wang -Y-Y, Zhou Z-H, Zhu J-L, et al. Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos Part B Eng. 2021;220:108985.
  • Zhao B, Liang L, Bai Z, et al. Poly (vinylidene fluoride)/Cu@ Ni anchored reduced-graphene oxide composite films with folding movement to boost microwave absorption properties. ES Energy Environ. 2021;14:79–86.
  • Pan D, Yang G, Abo-Dief HM, et al. Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 2022;14(7):209–227.
  • Gao T, Rong H, and Mahmoud KH, et al. Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. Adv Compos Hybrid Mater. 2022; 5 ;1–10. https://doi.org/10.1007/s42114-022-00507-1
  • Wang Y, Wang P, Du Z, et al. Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv Compos Hybrid Mater. 2022;5(1):209–219.
  • Wang -Y-Y, Sun W-J, Dai K, et al. Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption. Compos Sci Technol. 2021;212:108848.
  • Bao C, Song L, Wilkie CA, et al. Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J Mater Chem. 2012;22(32):16399–16406.
  • Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with image-J. Biophotonics Int. 2004;11:36–41.
  • Tammaro D, Astarita A, Di Maio E, et al. Polystyrene foaming at high pressure drop rates. Ind Eng Chem Res. 2016;55(19):5696–5701.
  • Zhao B, Hamidinejad M, Wang S, et al. Advances in electromagnetic shielding properties of composite foams. J Mater Chem A. 2021;9:8896–8949.
  • Chen T, Wu G, Panahi-Sarmad M, et al. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions. Compos Sci Technol. 2022;227:109563.
  • Huang X, Panahi-Sarmad M, Dong K, et al. Tracing evolutions in electro-activated shape memory polymer composites with 4D printing strategies: a systematic review. Compos Part A Appl Sci Manuf. 2021;147:106444.
  • Gong P, Buahom P, Tran M, et al. Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon. 2015;3:003.
  • Harikrishnan G, Singh SN, Kiesel E, et al. Nanodispersions of carbon nano fiber for polyurethane foaming. Polymer. 2010;51(15):3349–3353.
  • Al-saleh MH, Saadeh WH, Sundararaj U. EMI shielding effectiveness of carbon based nanostructured polymeric materials : a comparative study. Carbon N Y. 2013;60:146–156.
  • Ke K, Yue L, Shao H, et al. Boosting electrical and piezoresistive properties of polymer nanocomposites via hybrid carbon fillers: a review. Carbon N Y. 2021;173:1020–1040.
  • Wang M, Tang XH, Cai JH, et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon N Y. 2021;177:377–402.
  • Panahi-Sarmad M, Zahiri B, Noroozi M. Graphene-based composite for dielectric elastomer actuator: a comprehensive review. Sens Actuators A Phys. 2019;293:222–241.
  • Zhao B, Hamidinejad M, Zhao C, et al. A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. J Mater Chem A 2019;7:133–140. 1