1,572
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Actuation performances of catkin fibers reinforced thiol-acrylate main-chain liquid crystalline elastomer

, , , , , , , , & show all
Pages 668-690 | Accepted 28 Sep 2022, Published online: 24 Oct 2022

References

  • De Jeu WH. Liquid crystal elastomers: materials and applications. Aachen Germany: Aachen University; 2012.
  • Yu H. Photoresponsive liquid crystalline block copolymers: from photonics to nanotechnology. Prog Polym Sci. 2014;39(4):781–815.
  • Kularatne RS, Kim H, Boothby HJM, et al. Liquid crystal elastomer actuators: synthesis, alignment, and applications. J Polym Sci Part B Polym Phy. 2017;55(2017):395–411.
  • Ula SW, Traugutt NA, Volpe RH, et al. Liquid crystal elastomers: an introduction and review of emerging technologies. Liq Cryst Rev. 2018;6(1):78–107.
  • Pilz da Cunha M, Debije MG, Schenning APHJ. Bioinspired light-driven soft robots based on liquid crystal polymers. Chem Soc Rev. 2020;49(18):6568–6578.
  • Wang QE, Niu H, Wang HY, et al. Carbon nanotubes modified nanocomposites based on liquid crystalline elastomers. Mol Cryst Liq Cryst. 2021;732(1):11–49.
  • Liu L, Wang M, Guo L-X, et al. Aggregation-induced emission luminogen-functionalized liquid crystal elastomer soft actuators. Macromolecules. 2018;51:4516–4524.
  • Saed MO, Ambulo CP, Kim H, et al. Molecularly‐engineered, 4d‐printed liquid crystal elastomer actuators. Adv Funct Mater. 2018;29(3):1806412.
  • Chen Q, Li Y, Yang Y, et al. Durable liquid-crystalline vitrimer actuators. Chem Sci. 2019;10(10):3025–3030.
  • Zuo B, Wang M, Lin BP, et al. Visible and infrared three-wavelength modulated multi-directional actuators. Nat Commun. 2019;10(1):4539.
  • He Q, Wang Z, Wang Y, et al. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS Appl Mater Interfaces. 2020;12(31):35464–35474.
  • Li Y, Liu Y, Luo D. Polarization dependent light‐driven liquid crystal elastomer actuators based on photothermal effect. Adv Opt Mater. 2020;9:2001861.1–2001861.9.
  • Xu J, Zhao N, Qin B, et al. Optical wavelength selective photoactuation of nanometal-doped liquid crystalline elastomers by using surface plasmon resonance. ACS Appl Mater Interfaces. 2021;13(37):44833–44843.
  • Song T, Lei H, Clancy AJ, et al. Supramolecular hydrogen bond enables Kapton nanofibers to reinforce liquid-crystalline polymers for light-fueled flight. Nano Energy. 2021;87:106207.
  • Wang YP, Sun JH, Liao W, et al. Liquid crystal elastomer twist fibers toward rotating microengines. Adv Mater. 2022;34(9):2107840.
  • Liu Z, Bisoyi HK, Huang Y, et al. Thermo- and mechanochromic camouflage and self-healing in biomimetic soft actuators based on liquid crystal elastomers. Angew Chem Int Ed. 2022;61:e202115755.
  • Zhao T, Zhang Y, Fan Y, et al. Light-modulated liquid crystal elastomer actuator with multimodal shape morphing and multifunction. J Mater Chem C. 2022;10(10):3796–3803.
  • Hu J, Yu M, Wang M, et al. Design, regulation, and applications of soft actuators based on liquid-crystalline polymers and their composites. ACS Appl Mater Interfaces. 2022;14(11):12951–12963.
  • Tian H, Wang Z, Chen Y, et al. Polydopamine-coated main- chain liquid crystal elastomer as optically driven artificial muscle. ACS Appl Mater Interfaces. 2018;10(9):8307–8316.
  • Kim H, Lee JA, Ambulo CP, et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites. Adv Funct Mater. 2019;29(48):1905063.
  • Lu H-F, Wang M, Chen X-M, et al. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property. J Am Chem Soc. 2019;141(36):14364–14369.
  • Liu H, Tian H, Shao J, et al. An electrically actuated soft artificial muscle based on a high-performance flexible electrothermal film and liquid-crystal elastomer. ACS Appl Mater Interfaces. 2020;12(50):56338–56349.
  • Chen C, Liu Y, He X, et al. Multiresponse shape-memory nanocomposite with a reversible cycle for powerful artificial muscles. Chem Mater. 2021;33(3):987–997.
  • Lee JH, Bae J, Hwang JH, et al. Robust and reprocessable artificial muscles based on liquid crystal elastomers with dynamic thiourea bonds. Adv Funct Mater. 2022;32(13):2110360.
  • Zhao N, Wang X, Yao L, et al. Actuation performance of a liquid crystalline elastomer composite reinforced by eiderdown fibers. Soft Matter. 2022;18(6):1264–1274.
  • Qian X, Chen Q, Yang Y, et al. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots. Adv Mater. 2018;30(29):1801103.
  • Zeng H, Wasylczyk P, Wiersma DS, et al. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Adv Mater. 2018;30(24):1703554.
  • He QG, Wang ZJ, Wang Y, et al. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Sci Adv. 2019;5(10):eaax5746.
  • Shen C, Lan R, Huang R, et al. Photochemically and photothermally controllable liquid crystalline network and soft walkers. ACS App Mater Interfaces. 2021;13(2):3221–3227.
  • Li Y, Yu HB, Yu K, et al. Reconfigurable three-dimensional mesotructures of spatially programmed liquid crystal elastomers and their ferromagnetic composites. Adv Funct Mater. 2021;31(23):2100338.
  • Zhang J, Guo Y, Hu W, et al. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines. Adv Mater. 2021;33(8):2006191.
  • Apsite I, Salehi S, Ionov L. Materials for smart soft actuator systems. Chem Rev. 2022;122(1):1349–1415.
  • Yu Z, Wang Y, Zheng J, et al. Fast-response bioinspired near-infrared light-driven soft robot based on two-stage deformation. ACS Appl Mater Interfaces. 2022;14(14):16649–16657.
  • Lv JA, Liu YY, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature. 2016;537(7619):179.
  • Palagi S, Mark AG, Reigh SY, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater. 2016;15(6):647.
  • Wang M, Lin BP, Yang H. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes. Nat Commun. 2016;7(1):13981.
  • Shahsavan H, Salili SM, Jakli A, et al. Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads. Adv Mater. 2017;29(3):1604021.
  • Zuo B, Wang M, Lin B-P, et al. Photomodulated tricolor-changing artificial flowers. Chem Mater. 2018;30(21):8079–8088.
  • Ferrantini C, Pioner JM, Martella D, et al. Development of light-responsive liquid crystalline elastomers to assist cardiac contraction. Circ Res. 2019;124(8):e44–e54.
  • Shaha RK, Merkel DR, Anderson MP, et al. Biocompatible liquid-crystal elastomers mimic the intervertebral disc. J Mech Behav Biomed Mater. 2020;107:103757.
  • Hussain M, Jull EIL, Mandle RJ, et al. Liquid crystal elastomers for biological applications. Nanomaterials. 2021;11(3):813.
  • Liu Z, Bisoyi HK, Huang Y, et al. An artificial light-harvesting system with controllable efficiency enabled by an annulene-based anisotropic fluid. Angew Chem Int Ed. 2022;61:e202115755.
  • Wang YP, Liao W, Sun JH, et al. Bioinspired construction of artificial cardiac muscles based on liquid crystal elastomer fibers. Adv Mater Technol. 2022;7(1):2100934.
  • Robert MJ. Mechanics of composite materials. New York U.S.A: McGraw-Hill Book Company; 1975.
  • Ku H, Wang H, Pattarachaiyakoop N, et al. A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B-Eng. 2011;42(4):856–873.
  • Siddique A, Abid S, Shafiq F, et al. Mode I fracture toughness of fiber-reinforced polymer composites: a review. J Ind Text. 2021;50(8):1165–1192.
  • Ji Y, Marshall JE, Terentjev EM. Nanoparticle-liquid crystalline elastomer composites. Polymers. 2012;4(1):316–340.
  • Cresta V, Romano G, Kolpak A, et al. Nanostructured composites based on liquid-crystalline elastomers. Polymers. 2018;10:773.
  • Guin T, Kowalski BA, Rao R, et al. Electrical control of shape in voxelated liquid crystalline polymer nanocomposites. ACS Appl Mater Interfaces. 2018;10:1187–1194.
  • Liu JQ, Gao YC, Wang HH, et al. Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer-carbon nanotube composites. Adv Intell Syst. 2020;2(6):1900163.
  • Liu YJ, Du HY, Liu LW, et al. Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct. 2014;23(2):023001.
  • Liu TZ, Zhou TY, Yao YT, et al. Stimulus methods of multi-functional shape memory polymer nanocomposites: a review. Compos A Appl S. 2017;100:20–30.
  • Xia YL, He Y, Zhang FH, et al. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv Mater. 2020;33(6):2000713.
  • Kabir MM, Wang H, Lau KT, et al. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B-Eng. 2012;43(7):2883–2892.
  • Fortea-Verdejo M, Bumbaris E, Burgstaller C, et al. Plant fibre-reinforced polymers: where do we stand in terms of tensile properties? Int Mater Rev. 2017;62(8):441–464.
  • Mohit H, Arul Mozhi Selvan V. A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Compos Interfaces. 2018;25(5–7):629–667.
  • Sun Z. Hyperbranched polymers in modifying natural plant fibers and their applications in polymer matrix composites-a review. J Agric Food Chem. 2019;67(32):8715–8724.
  • Kenned JJ, Sankaranarayanasamy K, Kumar CS. Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: a review. Polym Polym Compos. 2020;29:1011–1038.
  • Sippach T, Dahy H, Uhlig K, et al. Structural optimization through biomimetic-inspired material-specific application of plant-based natural fiber-reinforced polymer composites (nfrp) for future sustainable lightweight architecture. Polymers. 2020;12(12):3048.
  • Lee CH, Khalina A, Lee SH. Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: a review. Polymers (Basel). 2021;13(3):438.
  • Mohit H, Mavinkere Rangappa S, Siengchin S, et al. A comprehensive review on performance and machinability of plant fiber polymer composites. Polym Composite. 2021;43(1):608–623.
  • Wong D, Anwar M, Debnath S, et al. A review: recent development of natural fiber-reinforced polymer nanocomposites. Jom. 2021;73(8):2504–2515.
  • Zhang XX, Li ZQ, Yu Y, et al. Characterizations of poplar catkin fibers and their potential for enzymatic hydrolysis. J Wood Sci. 2018;64(4):458–462.
  • Wu Y, Wu XY, Shi TL, et al. The microstructure and mechanical properties of poplar catkin fibers evaluated by atomic force microscope (AFM) and nanoindentation. Forests. 2019;10(11):938.
  • Yuan YA, Xiao YY, Jia ZX, et al. Facile synthesis of flexible hollow conductive polyaniline composite fibers from willow catkins. J Nat Fibers. 2020;17(10):1479–1487.
  • Hoyle CE, Bowman CN. Thiol-ene click chemistry. Angew Chem Int Ed. 2010;49:1540–1573.
  • Martella D, Parmeggiani C, Wiersma DS, et al. The first thiol-yne click chemistry approach for the preparation of liquid crystalline elastomers. J Mater Chem C. 2015;3(34):9003–9010.
  • Ware TH, Perry ZP, Middleton CM, et al. Programmable liquid crystal elastomers prepared by thiol-ene photopolymerization. ACS Macro Letters. 2015;4(9):942–946.
  • Yakacki CM, Saed M, Nair DP, et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. RSC Adv. 2015;5(25):18997–19001.
  • Saed MO, Torbati AH, Nair DP, et al. Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. J Vis Exp. 2016;107:e53546.
  • Torbati AH, Mather PT. A hydrogel-forming liquid crystalline elastomer exhibiting soft shape memory. J Polym Sci Part B. 2016;54(1):38–52.
  • Saed MO, Torbati AH, Starr CA, et al. Thiol-acrylate main-chain liquid-crystalline elastomers with tunable thermomechanical properties and actuation strain. J Polym Sci Part B: Polym Phys. 2017;55(2):157–168.
  • Saed MO, Volpe RH, Traugutt NA, et al. High strain actuation liquid crystal elastomers via modulation of mesophase structure. Soft Matter. 2017;13(41):7537–7547.
  • Xia Y, Zhang X, Yang S. Instant locking of molecular ordering in liquid crystal elastomers by oxygen-mediated thiol-acrylate click reactions. Angew Chem Int Ed. 2018;57(20):5665–5668.
  • Barnes M, Verduzco R. Direct shape programming of liquid crystal elastomers. Soft Matter. 2019;15(5):870–879.
  • Cho EH, Luu K, Park SY. Mechano-actuated light-responsive main-chain liquid crystal elastomers. Macromolecules. 2021;54(12):5397–5409.
  • Hebner TS, Fowler HE, Herbert KM, et al. Polymer network structure, properties, and formation of liquid crystalline elastomers prepared via thiol-acrylate chain transfer reactions. Macromolecules. 2021;54(23):11074–11082.
  • Li Y, Luo C, Yu K, et al. Remotely controlled, reversible, on-demand assembly and reconfiguration of 3d mesostructures via liquid crystal elastomer platforms. ACS Appl Mater Interfaces. 2021;13(7):8929–8939.
  • Ma B, Xu C, Cui L, et al. Magnetic printing of liquid metal for perceptive soft actuators with embodied intelligence. ACS Appl Mater Interfaces. 2021;13:5574–5582.
  • Martinez A, Clement A, Gao J, et al. Thermomechanically active electrodes power work-dense soft actuators. Soft Matter. 2021;17(6):1521–1529.
  • Ni B, Liu G, Zhang M, et al. Customizable sophisticated three-dimensional shape changes of large-size liquid crystal elastomer actuators. ACS Appl Mater Interfaces. 2021;13(45):54439–54446.
  • Li Y, Liu T, Ambrogi V, et al. Liquid crystalline elastomers based on click chemistry. ACS Appl Mater Interfaces. 2022;14(13):14842–14858.
  • D’alba L, Carlsen TH, Asgeirsson A, et al. Contributions of feather microstructure to eider down insulation properties. J Avian Biol. 2017;48(8):1150–1157.