227
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simultaneously improving fabrication accuracy and interfacial bonding strength of multi-material projection stereolithography by multi-step exposure

, , , , , & show all
Pages 387-404 | Received 15 Mar 2024, Accepted 27 Apr 2024, Published online: 08 May 2024

References

  • Rafiee M, Farahani RD, Therriault D. Multi-material 3D and 4D printing: a survey. Adv Sci. 2020;7(12):1902307. doi: 10.1002/advs.201902307
  • Ren H, Yang X, Wang Z, et al. Smart structures with embedded flexible sensors fabricated by fused deposition modeling-based multimaterial 3D printing. Int J Smart Nano Mater. 2022;13(3):447–464. doi: 10.1080/19475411.2022.2095454
  • Zhang Z, Demir KG, Gu GX. Developments in 4D-printing: a review on current smart materials, technologies, and applications. Int J Smart Nano Mater. 2019;10(3):205–224. doi: 10.1080/19475411.2019.1591541
  • Uysal R, Stubbs JB. A new method of printing multi-material textiles by fused deposition modelling (FDM). Tekstilec. 2019;62(4):248–257. doi: 10.14502/Tekstilec2019.62.248-257
  • Elkaseer A, Chen KJ, Janhsen JC, et al. Material jetting for advanced applications: a state-of-the-art review, gaps and future directions. Addit Manuf. 2022;60:103270. doi: 10.1016/j.addma.2022.103270
  • Sampson KL, Deore B, Go A, et al. Multimaterial vat polymerization additive manufacturing. ACS Appl Polym Mater. 2021;3(9):4304–4324. doi: 10.1021/acsapm.1c00262
  • Hensleigh R, Cui HC, Xu ZP, et al. Charge-programmed three-dimensional printing for multi-material electronic devices. Nat Electron. 2020;3(4):216–224. doi: 10.1038/s41928-020-0391-2
  • Ge Q, Li ZQ, Wang ZL, et al. Projection micro stereolithography based 3D printing and its applications. Int J Extrem Manuf. 2020;2(2):022004. doi: 10.1088/2631-7990/ab8d9a
  • Gibson I, Rosen DW, Stucker B, et al. Additive manufacturing technologies. 3rd ed. New York: Springer; 2021.
  • Zhou C, Chen Y, Yang ZG, et al. Digital material fabrication using mask-image-projection-based stereolithography. Rapid Prototyping J. 2013;19(3):153–165. doi: 10.1108/13552541311312148
  • Xu Z, Ha CS, Kadam R, et al. Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices. Addit Manuf. 2020;32:32. doi: 10.1016/j.addma.2020.101106
  • Cheng J, Wang R, Sun Z, et al. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nat Commun. 2022;13(1):7931. doi: 10.1038/s41467-022-35622-6
  • Yuan C, Wang F, Ge Q. Multimaterial direct 4D printing of high stiffness structures with large bending curvature. Extreme Mech Lett. 2021;42:101122. doi: 10.1016/j.eml.2020.101122
  • Ge Q, Sakhaei AH, Lee H, et al. Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep. 2016;6(1):31110. doi: 10.1038/srep31110
  • Wang Q, Jackson JA, Ge Q, et al. Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys Rev Lett. 2016;117(17):175901. doi: 10.1103/PhysRevLett.117.175901
  • Chen D, Zheng X. Multi-material additive manufacturing of metamaterials with giant, tailorable negative Poisson’s ratios. Sci Rep. 2018;8(1):9139. doi: 10.1038/s41598-018-26980-7
  • Li X, Yang Y, Xie B, et al. 3D printing of flexible liquid sensor based on swelling behavior of hydrogel with carbon nanotubes. Adv Mater Technol. 2019;4(2):1800476. doi: 10.1002/admt.201800476
  • Xu ZP, Lu HT, Chen QY, et al. Additive manufacturing of self-sensing carbon fiber composites. Adv Eng Mater. 2023;2301249. doi: 10.1002/adem.202301249
  • Nazir A, Gokcekaya O, Md Masum Billah K, et al. Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater Des. 2023;226:111661. doi: 10.1016/j.matdes.2023.111661
  • Vu IQ, Bass LB, Williams CB, et al. Characterizing the effect of print orientation on interface integrity of multi-material jetting additive manufacturing. Addit Manuf. 2018;22:447–461. doi: 10.1016/j.addma.2018.05.036
  • Lumpe TS, Mueller J, Shea K. Tensile properties of multi-material interfaces in 3D printed parts. Mater Des. 2019;162:1–9. doi: 10.1016/j.matdes.2018.11.024
  • Liu F, Li T, Jiang X, et al. The effect of material mixing on interfacial stiffness and strength of multi-material additive manufacturing. Addit Manuf. 2020;36:101502. doi: 10.1016/j.addma.2020.101502
  • Lopes LR, Silva AF, Carneiro OS. Multi-material 3D printing: the relevance of materials affinity on the boundary interface performance. Addit Manuf. 2018;23:45–52. doi: 10.1016/j.addma.2018.06.027
  • Yin J, Lu C, Fu J, et al. Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion. Mater Des. 2018;150:104–112. doi: 10.1016/j.matdes.2018.04.029
  • Tamburrino F, Graziosi S, Bordegoni M. The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study. Virtual Phys Prototyp. 2019;14(4):316–332. doi: 10.1080/17452759.2019.1607758
  • Kowsari K, Akbari S, Wang D, et al. High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing. 3D Print Addit Manuf. 2018;5(3):185–193. doi: 10.1089/3dp.2018.0004
  • Zhang B, Li SY, Hingorani H, et al. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. J Mat Chem B. 2018;6(20):3246–3253. doi: 10.1039/C8TB00673C
  • Song Q, Chen Y, Hou P, et al. Fabrication of multi-material pneumatic actuators and microactuators using stereolithography. Micromach. 2023;14(2):244. doi: 10.3390/mi14020244
  • Shankar Limaye A, Rosen DW. Compensation zone approach to avoid print‐through errors in mask projection stereolithography builds. Rapid Prototyping J. 2006;12(5):283–291. doi: 10.1108/13552540610707040
  • Han D, Yang C, Fang NX, et al. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Addit Manuf. 2019;27:606–615. doi: 10.1016/j.addma.2019.03.031
  • Zakeri S, Vippola M, Levänen E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit Manuf. 2020;35:101177. doi: 10.1016/j.addma.2020.101177
  • Chen J, Su R, Zhai X, et al. Improving the accuracy of stereolithography 3D printed Al2O3 microcomponents by adding photoabsorber: fundamentals and experiments. J Mater Res Technol. 2023;27:757–766. doi: 10.1016/j.jmrt.2023.09.309
  • Xu K, Chen Y. Mask image planning for deformation control in projection-based stereolithography process. J Manuf Sci Eng-Trans ASME. 2015;137(3):031014. doi: 10.1115/1.4029802
  • Zhang YF, CJX N, Chen Z, et al. Miniature pneumatic actuators for soft robots by high‐resolution multimaterial 3D printing. Adv Mater Technol. 2019;4(10):1900427. doi: 10.1002/admt.201900427
  • Gong H, Beauchamp M, Perry S, et al. Optical approach to resin formulation for 3D printed microfluidics. RSC Adv. 2015;5(129):106621–106632. doi: 10.1039/C5RA23855B
  • Gojzewski H, Guo Z, Grzelachowska W, et al. Layer-by-layer printing of photopolymers in 3D: how weak is the interface? ACS Appl Mater Interfaces. 2020;12(7):8908–8914. doi: 10.1021/acsami.9b22272
  • Xue D, Wang Y, Mei D. Multi-step exposure method for improving structure flatness in digital light processing-based printing. J Manuf Process. 2019;39:106–113. doi: 10.1016/j.jmapro.2019.02.013
  • Deng X, Zhang G, Yu Z, et al. Manufacturing of mesoscale non-assembly mechanism with water-soluble support in projection stereolithography process. J Manuf Process. 2023;85:658–665. doi: 10.1016/j.jmapro.2022.12.010
  • Liu S, Wang W, Xu W, et al. Continuous three-dimensional printing of architected piezoelectric sensors in minutes. Research. 2022;2022:9790307. doi: 10.34133/2022/9790307
  • Sun C, Fang N, Wu DM, et al. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuator A-Phys. 2005;121(1):113–120. doi: 10.1016/j.sna.2004.12.011
  • Wu X, Lian Q, Li D, et al. Biphasic osteochondral scaffold fabrication using multi-material mask projection stereolithography. Rapid Prototyping J. 2019;25(2):277–288. doi: 10.1108/RPJ-07-2017-0144
  • Yue L, Macrae Montgomery S, Sun X, et al. Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability. Nat Commun. 2023;14(1):1251. doi: 10.1038/s41467-023-36909-y
  • Harley BA, Lynn AK, Wissner‐Gross Z, et al. Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res Part A. 2009;92A(3):1078–1093. doi: 10.1002/jbm.a.32387
  • Kuang X, Wu J, Chen K, et al. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci Adv. 2019;5(5):eaav5790. doi: 10.1126/sciadv.aav5790