308
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Unlocking the potential of transdermal drug delivery

, , &
Received 15 Apr 2024, Accepted 04 Jun 2024, Published online: 15 Jun 2024

References

  • Sneader W. Drug discovery: A history. Chichester: John Wiley and Sons; 2005:1–468.
  • Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–672. doi: 10.1038/nrd4363
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–1268. doi: 10.1038/nbt.1504
  • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115–124. doi: 10.1038/nrd1304
  • Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5(9):951–967. doi: 10.1038/s41551-021-00698-w
  • Goodman LS, Gilman A, Hardman JG, et al. Goodman & Gilman’s the pharmacological basis of therapeutics. 9th ed. (NY): McGraw-Hill, Health Professions Division; 1996; p. xxi, 1905 p.
  • Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17(12):1063–1072. doi: 10.1111/j.1600-0625.2008.00786.x
  • Lasagna L, Greenblatt DJ. More than skin deep: transdermal drug-delivery systems. N Engl J Med. 1986;314(25):1638–1639. doi: 10.1056/NEJM198606193142509
  • Bommannan D, Menon GK, Okuyama H, et al. 2. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery. Pharmaceut Res. 1992;9(8):1043–1047. doi: 10.1023/A:1015806528336
  • Bommannan D, Okuyama H, Stauffer P, et al. 1. The use of high-frequency ultrasound to enhance transdermal drug delivery. Pharmaceut Res. 1992;9(4):559–564. doi: 10.1023/A:1015808917491
  • McElnay JC, Kennedy TA, Harland R. The influence of ultrasound on the percutaneous absorption of fluocinolone acetonide. Int J Pharm. 1987;40(1–2):105–110. doi: 10.1016/0378-5173(87)90054-8
  • Mitragotri S, Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis. Pharmaceut Res. 1996;13(3):411–420. doi: 10.1023/A:1016096626810
  • Mitragotri S. Sonophoresis: a 50-year journey. Drug Discovery Today. 2004;9(17):735–736. doi: 10.1016/S1359-6446(04)03209-X
  • Kalia YN, Naik A, Garrison J, et al. Iontophoretic drug delivery. Adv Drug Deliv Rev. 2004;56(5):619–658. doi: 10.1016/j.addr.2003.10.026
  • Jacoby A. The treatment of pelvic inflammation by iontophoresis of acetyl beta methylcholine chloride. Am J Obstet Gynecol. 1936;31(1):93–100. doi: 10.1016/S0002-9378(36)90959-6
  • Kovacs J. The iontophoresis of acetyl-beta-methylcholine chloride in the treatment of chronic arthritis and peripheral vascular disease. The Am J Med Sci. 1934;188(1):32–36. doi: 10.1097/00000441-193407000-00004
  • Martin L, Ruland H, Ruland L. Studies on the local and systematic effects of acetyl beta-methylcholine administered by iontophoresis. N Engl J Med. 1937;217(6):202–205. doi: 10.1056/NEJM193708052170602
  • Murdan S. Electro-responsive drug delivery from hydrogels. J Control Release. 2003;92(1–2):1–17. doi: 10.1016/S0168-3659(03)00303-1
  • Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–587. doi: 10.1016/j.addr.2003.10.023
  • Henry S, McAllister DV, Allen MG, et al. Microfabricated microneedles: A novel approach to transdermal drug delivery. J Pharmaceut sci. 1998;87:922–925.
  • Lee H, Song C, Hong YS, et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv. 2017;3(3):e1601314. doi: 10.1126/sciadv.1601314
  • Amani H, Shahbazi MA, D’Amico C, et al. Microneedles for painless transdermal immunotherapeutic applications. J Control Release. 2021;330:185–217. doi: 10.1016/j.jconrel.2020.12.019
  • Donnelly RF, Larraneta E. Slowly dissolving intradermal microneedles. Nat Biomed Eng. 2019;3(3):169–170. doi: 10.1038/s41551-019-0369-4
  • He ML, Yang GZ, Zhang SH, et al. Dissolving microneedles loaded with etonogestrel microcrystal particles for intradermal sustained delivery. J Pharmaceut sci. 2018;107(4):1037–1045. doi: 10.1016/j.xphs.2017.11.013
  • Kim E, Erdos G, Huang SH, et al. Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine. 2020;0:102743. doi: 10.1016/j.ebiom.2020.102743
  • Larrañeta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater Sci Eng R-Rep. 2016;104:1–32. doi: 10.1016/j.mser.2016.03.001
  • Vander Straeten A, Sarmadi M, Daristotle JL, et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat Biotechnol. 2024;42:510–517. doi: 10.1038/s41587-023-01774-z
  • Alexander A, Dwivedi S, Ajazuddin, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release. 2012;164(1):26–40. doi: 10.1016/j.jconrel.2012.09.017
  • Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101–114. doi: 10.1016/S0928-0987(01)00167-1
  • Denet AR, Vanbever R, Préat V. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev. 2004;56(5):659–674. doi: 10.1016/j.addr.2003.10.027
  • Prausnitz MR, Bose VG, Langer R, et al. Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. In: Proceedings of the National Academy of Sciences of the United States of America; 1993, 90. p. 10504–10508.
  • Yarmush ML, Golberg A, Sersa G, et al. Electroporation-based technologies for medicine: principles, applications, and challenges. In: Yarmush ML, editor. Annual review of biomedical engineering, Vol. 16. 2014. p. 295–320. doi: 10.1146/annurev-bioeng-071813-104622.
  • Charoo NA, Rahman Z, Repka MA, et al. Electroporation: an avenue for transdermal drug delivery. Curr Drug Deliv. 2010;7(2):125–136. doi: 10.2174/156720110791011765
  • Zorec B, Becker S, Rebersek M, et al. Skin electroporation for transdermal drug delivery: the influence of the order of different square wave electric pulses. Int J Pharm. 2013;457(1):214–223. doi: 10.1016/j.ijpharm.2013.09.020
  • Park J, Lee H, Lim GS, et al. Enhanced transdermal drug delivery by Sonophoresis and simultaneous application of Sonophoresis and iontophoresis. AAPS Pharm Sci Tech. 2019;20(3):96. doi: 10.1208/s12249-019-1309-z
  • Watanabe S, Takagi S, Ga K, et al. Enhanced transdermal drug penetration by the simultaneous application of iontophoresis and sonophoresis. J Drug Delivery Sci Technol. 2009;19(3):185–189. doi: 10.1016/S1773-2247(09)50034-2
  • Donnelly RF, Singh TRR, Garland MJ, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater. 2012;22(23):4879–4890. doi: 10.1002/adfm.201200864
  • Kusama S, Sato K, Matsui Y, et al. Transdermal electroosmotic flow generated by a porous microneedle array patch. Nat Commun. 2021;12(1):658. doi: 10.1038/s41467-021-20948-4
  • Lan XM, She JC, Lin DA, et al. Microneedle-mediated delivery of lipid-coated cisplatin nanoparticles for efficient and safe cancer therapy. ACS Appl Mater Inter. 2018;10(39):33060–33069. doi: 10.1021/acsami.8b12926
  • Li XF, Xu Q, Zhang P, et al. Cutaneous microenvironment responsive microneedle patch for rapid gene release to treat subdermal tumor. J Control Release. 2019;314:72–80. doi: 10.1016/j.jconrel.2019.10.016
  • Li DD, Hu DD, Xu HX, et al. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials. 2021;264:120410. doi: 10.1016/j.biomaterials.2020.120410
  • Ye YQ, Wang C, Zhang XD, et al. A melanin-mediated cancer immunotherapy patch. Sci Immunol. 2017;2(17):eaan5692. doi: 10.1126/sciimmunol.aan5692
  • Ammar HO, Ghorab M, El-Nahhas SA, et al. Design of a transdermal delivery system for aspirin as an antithrombotic drug. Int J Pharm. 2006;327(1–2):81–88. doi: 10.1016/j.ijpharm.2006.07.054
  • Kanr M, Ita KB, Popova IE, et al. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur J Pharm Biopharm. 2014;86(2):284–291. doi: 10.1016/j.ejpb.2013.10.007
  • Ahad A, Al-Jenoobi FI, Al-Mohizea AM, et al. Systemic delivery of β-blockers via transdermal route for hypertension. Saudi Pharm J. 2015;23(6):587–602. doi: 10.1016/j.jsps.2013.12.019
  • Kim KJ, Hwang MJ, Shim WG, et al. Sustained drug release behavior of captopril-incorporated chitosan/carboxymethyl cellulose biomaterials for antihypertensive therapy. Int j biol macromol. 2024;255:128087. doi: 10.1016/j.ijbiomac.2023.128087
  • Jin X, Zhu DD, Chen BZ, et al. Insulin delivery systems combined with microneedle technology. Adv Drug Deliv Rev. 2018;127:119–137. doi: 10.1016/j.addr.2018.03.011
  • Mo R, Jiang TY, Di J, et al. Emerging micro-and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev. 2014;43(10):3595–3629. doi: 10.1039/c3cs60436e
  • Tachibana K, Tachibana S. Transdermal delivery of insulin by ultrasonic vibration. J Pharm Pharmacol. 1991;43(4):270–271. doi: 10.1111/j.2042-7158.1991.tb06681.x
  • Yu JC, Wang JQ, Zhang YQ, et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng. 2020;4(5):499–506. doi: 10.1038/s41551-019-0508-y
  • Zhang YQ, Yu JC, Kahkoska AR, et al. Advances in transdermal insulin delivery. Adv Drug Deliv Rev. 2019;139:51–70. doi: 10.1016/j.addr.2018.12.006
  • Qindeel M, Ullah MH, Fakhar Ud D, et al. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J Control Release. 2020;327:595–615. doi: 10.1016/j.jconrel.2020.09.016
  • Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7(4):438–470. doi: 10.3390/pharmaceutics7040438
  • Tezel A, Mitragotri S. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys J. 2003;85(6):3502–3512. doi: 10.1016/S0006-3495(03)74770-5
  • Sun S-Y, Zhang H, Fang W, et al. Chapter Three – Bio-chemo-mechanical coupling models of soft biological materials: a review. In: Bordas SPA, editor. Advances in Applied Mechanics. Vol. 55. San Diego: Elsevier; 2022. p. 309–392.
  • Chan WCW. Nanomedicine 2.0. accounts of chemical research. Acc Chem Res. 2017;50(3):627–632. doi: 10.1021/acs.accounts.6b00629
  • Kim BYS, Rutka JT, Chan WCW. Current concepts: Nanomedicine. N Engl J Med. 2010;363(25):2434–2443. doi: 10.1056/NEJMra0912273
  • Wagner V, Dullaart A, Bock AK, et al. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–1217. doi: 10.1038/nbt1006-1211
  • Kolarsick PAJ, Kolarsick MA, Goodwin C. Anatomy and physiology of the skin. J Dermatol Nurses’ Assoc. 2011;3:203–213. doi: 10.1097/JDN.0b013e3182274a98
  • Sandby-Moller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm-Venereol. 2003;83(6):410–413. doi: 10.1080/00015550310015419
  • Madison KC. Barrier function of the skin: “La raison d’Être” of the epidermis. J Invest Dermatol. 2003;121(2):231–241. doi: 10.1046/j.1523-1747.2003.12359.x
  • Böhling A, Bielfeldt S, Himmelmann A, et al. Comparison of the stratum corneum thickness measured in vivo with confocal raman spectroscopy and confocal reflectance microscopy. Skin Res Technol. 2014;20(1):50–57. doi: 10.1111/srt.12082
  • Russell LM, Wiedersberg S, Delgado-Charro MB. The determination of stratum corneum thickness an alternative approach. Eur J Pharm Biopharm. 2008;69(3):861–870. doi: 10.1016/j.ejpb.2008.02.002
  • Eckhart L, Lippens S, Tschachler E, et al. Cell death by cornification. BBA-Mol Cell Res. 2013;1833(12):3471–3480. doi: 10.1016/j.bbamcr.2013.06.010
  • Goldstein AM, Abramovits W. Ceramides and the stratum corneum: structure, function, and new methods to promote repair. Int J Dermatol. 2003;42(4):256–259. doi: 10.1046/j.1365-4362.2003.01507.x
  • Hamanaka S, Nishio M, Hara H, et al. Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J Invest Dermatol. 2002;119(2):416–423. doi: 10.1046/j.1523-1747.2002.01836.x
  • Boer M, Duchnik E, Maleszka R, et al. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postep Derm Alergol. 2016;33:1–5. doi: 10.5114/pdia.2015.48037
  • McGrath JA, Eady RAJ, Pope FM. Anatomy and Organization of Human Skin. In: Burns T, Breathnach S, Cox N, Griffiths C, editors. Rook’s Textbook of Dermatology. Oxford; Malden (MA): Blackwell Science; 2004 p. 45–128.
  • Corcuff P, Bertrand C, Leveque JL. Morphometry of human epidermis in vivo by real-time confocal microscopy. Arch Dermatol Res. 1993;285(8):475–481. doi: 10.1007/BF00376820
  • Limat A, Stockhammer E, Breitkreutz D, et al. Endogeneously regulated site-specific differentiation of human palmar skin keratinocytes in organotypic cocultures and in nude mouse transplants. Eur J Cell Biol. 1996;69(3):245–258.
  • Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008;8(12):935–947. doi: 10.1038/nri2455
  • Clayton K, Vallejo AF, Davies J, et al. Langerhans cells-programmed by the epidermis. Front Immunol. 2017;8:1676. doi: 10.3389/fimmu.2017.01676
  • Matsui T, Amagai M. Dissecting the formation, structure and barrier function of the stratum corneum. Int Immunol. 2015;27(6):269–280. doi: 10.1093/intimm/dxv013
  • Abraham J, Mathew S. Merkel cells: A collective review of current concepts. Int J Appl Basic Med. 2019;9(1):9–13. doi: 10.4103/ijabmr.IJABMR_34_18
  • Cichorek M, Wachulska M, Stasiewicz A, et al. Skin melanocytes: biology and development. Postep Derm Alergol. 2013;30:30–41. doi: 10.5114/pdia.2013.33376
  • Shirshin EA, Gurfinkel YI, Priezzhev AV, et al. Two-photon autofluorescence lifetime imaging of human skin papillary dermis: assessment of blood capillaries and structural proteins localization. Sci Rep-UK. 2017;7(1):7. doi: 10.1038/s41598-017-01238-w
  • Nguyen AV, Soulika AM. The Dynamics of the skin’s immune system. Int J Mol Sci. 2019;20(8):20. doi: 10.3390/ijms20081811
  • Lovaszi M, Szegedi A, Zouboulis CC, et al. Sebaceous-immunobiology is orchestrated by sebum lipids. Dermatoendocrinol. 2017;9(1):e1375636. doi: 10.1080/19381980.2017.1375636
  • Wong R, Geyer S, Weninger W, et al. The dynamic anatomy and patterning of skin. Exp Dermatol. 2016;25(2):92–98. doi: 10.1111/exd.12832
  • Ramadon D, McCrudden MTC, Courtenay AJ, et al. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res. 2022;12(4):758–791. doi: 10.1007/s13346-021-00909-6
  • Ruela ALM, Perissinato AG, Lino MED, et al. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz J Pharm Sci. 2016;52(3):527–544. doi: 10.1590/s1984-82502016000300018
  • Zhang A, Jung EC, Zhu HJ, et al. Vehicle effects on human stratum corneum absorption and skin penetration. Toxicol Ind Health. 2017;33(5):416–425. doi: 10.1177/0748233716656119
  • Sznitowska M, Janicki S, Williams AC. Intracellular or intercellular localization of the polar pathway of penetration across stratum corneum. J Pharmaceut sci. 1998;87(9):1109–1114. doi: 10.1021/js980018w
  • N’Da DD. Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules. 2014;19(12):20780–20807. doi: 10.3390/molecules191220780
  • Fiserovabergerova V, Pierce JT, Droz PO. Dermal absorption potential of industrial-chemicals - criteria for skin notation. Am J Ind Med. 1990;17(5):617–635. doi: 10.1002/ajim.4700170507
  • McKone TE, Howd RA. Estimating dermal uptake of nonionic organic chemicals from water and soil: I. Unified fugacity-based models for risk assessments. Risk Anal. 1992;12(4):543–557. doi: 10.1111/j.1539-6924.1992.tb00711.x
  • Potts RO, Guy RH. Predicting skin permeability. Pharmaceut Res. 1992;9(5):663–669. doi: 10.1023/A:1015810312465
  • Karande P, Jain A, Ergun K, et al. Design principles of chemical penetration enhancers for transdermal drug delivery. In: Proceedings of the National Academy of Sciences of the United States of America; 2005, 102. p. 4688–4693.
  • Aqil M, Ahad A, Sultana V, et al. Status of terpenes as skin penetration enhancers. Drug Discovery Today. 2007;12(23–24):1061–1067. doi: 10.1016/j.drudis.2007.09.001
  • Kanikkannan N, Kandimalla K, Lamba SS, et al. Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr Med Chem. 2000;7(6):593–608. doi: 10.2174/0929867003374840
  • Kovácik A, Kopecná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Delivery. 2020;17(2):145–156. doi: 10.1080/17425247.2020.1713087
  • Moser K, Kriwet K, Naik A, et al. Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm. 2001;52(2):103–112. doi: 10.1016/S0939-6411(01)00166-7
  • Pathan IB, Setty CM. Chemical penetration enhancers for transdermal drug delivery systems. Trop J Pharm Res. 2009;8(2):173–179. doi: 10.4314/tjpr.v8i2.44527
  • Williams AC, Barry BW. Skin absorption enhancers. Crit Rev Ther Drug Carrier Syst. 1992;9(3–4):305–353.
  • Polat BE, Hart D, Langer R, et al. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release. 2011;152(3):330–348. doi: 10.1016/j.jconrel.2011.01.006
  • Bachhav YG, Summer S, Heinrich A, et al. Effect of controlled laser microporation on drug transport kinetics into and across the skin. J Control Release. 2010;146(1):31–36. doi: 10.1016/j.jconrel.2010.05.025
  • Gou S, Del Río-Sancho S, Laubach HJ, et al. YAG fractional laser ablation improves cutaneous delivery of pentoxifylline from different topical dosage forms. Int J Pharm. 2022;628:122259. doi: 10.1016/j.ijpharm.2022.122259
  • Joshi D, Gala RP, Uddin MN, et al. Novel ablative laser mediated transdermal immunization for microparticulate measles vaccine. Int J Pharm. 2021;606:120882. doi: 10.1016/j.ijpharm.2021.120882
  • Lee WR, Shen SC, Wang KH, et al. The effect of laser treatment on skin to enhance and control transdermal delivery of 5-fluorouracil. J Pharmaceut Sci. 2002;91(7):1613–1626. doi: 10.1002/jps.10142
  • Lin CH, Aljuffali IA, Fang JY. Lasers as an approach for promoting drug delivery via skin. Expert Opin Drug Delivery. 2014;11(4):599–614. doi: 10.1517/17425247.2014.885501
  • Sklar LR, Burnett CT, Waibel JS, et al. Laser assisted drug delivery: A review of an evolving technology. Lasers Surg Med. 2014;46(4):249–262. doi: 10.1002/lsm.22227
  • Vora D, Kim Y, Banga AK. Development and evaluation of a heparin gel for transdermal delivery via laser-generated micropores. Ther Deliv. 2021;12(2):133–144. doi: 10.4155/tde-2020-0024
  • Zhao YW, Voyer J, Li YB, et al. Laser microporation facilitates topical drug delivery: a comprehensive review about preclinical development and clinical application. Expert Opin Drug Delivery. 2023;20(1):31–54. doi: 10.1080/17425247.2023.2152002
  • Kassan DG, Lynch AM, Stiller MJ. Physical enhancement of dermatologic drug delivery: iontophoresis and phonophoresis. J Am Acad Dermatol. 1996;34(4):657–666. doi: 10.1016/S0190-9622(96)80069-7
  • Gangarosa LP, Hill JM. Modern Iontophoresis for local-drug delivery. Int J Pharm. 1995;123(2):159–171. doi: 10.1016/0378-5173(95)00047-M
  • Vranic E. Iontophoresis: fundamentals, developments and application. Bosn J Basic Med Sci. 2003;3(3):54–58. doi: 10.17305/bjbms.2003.3530
  • Zuo J, Du LN, Li M, et al. Transdermal enhancement effect and mechanism of iontophoresis for non-steroidal anti-inflammatory drugs. Int J Pharm. 2014;466(1–2):76–82. doi: 10.1016/j.ijpharm.2014.03.013
  • Cázares-Delgadillo J, Ganem-Rondero A, Quintanar-Guerrero D, et al. Using transdermal iontophoresis to increase granisetron delivery across skin in vitro and in vivo: effect of experimental conditions and a comparison with other enhancement strategies. Eur J Pharm Sci. 2010;39(5):387–393. doi: 10.1016/j.ejps.2010.01.008
  • Calatayud-Pascual MA, Balaguer-Fernández C, Serna-Jiménez CE, et al. Effect of iontophoresis on in vitro transdermal absorption of almotriptan. Int J Pharm. 2011;416(1):189–194. doi: 10.1016/j.ijpharm.2011.06.039
  • Saluja S, Kasha PC, Paturi J, et al. A novel electronic skin patch for delivery and pharmacokinetic evaluation of donepezil following transdermal iontophoresis. Int J Pharm. 2013;453(2):395–399. doi: 10.1016/j.ijpharm.2013.05.029
  • Fang JY, Huang YB, Wu PC, et al. Transdermal iontophoresis of sodium nonivamide acetate I. consideration of electrical and chemical factors. Int J Pharm. 1996;143(1):47–58. doi: 10.1016/S0378-5173(96)04681-9
  • Pillai O, Borkute SD, Sivaprasad N, et al. Transdermal iontophoresis of insulin – II. Physicochemical considerations. Int J Pharm. 2003;254(2):271–280. doi: 10.1016/S0378-5173(03)00034-6
  • Shin MD, Shukla S, Chung YH, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotech. 2020;15(8):646–655. doi: 10.1038/s41565-020-0737-y
  • Chakhalian D, Shultz RB, Miles CE, et al. Opportunities for biomaterials to address the challenges of COVID-19. J Biomed Mater Res Part A. 2020;108(10):1974–1990. doi: 10.1002/jbm.a.37059
  • Mc Crudden MTC, Larrañeta E, Clark A, et al. Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J Control Release. 2018;292:119–129. doi: 10.1016/j.jconrel.2018.11.002
  • Mc Crudden MTC, Larrañeta E, Clark A, et al. Formulation, and evaluation of novel dissolving microarray patches containing rilpivirine for intravaginal delivery. Adv Healthcare Mater. 2019;8(9):1801510. doi: 10.1002/adhm.201801510
  • Yavuz B, Chambre L, Harrington K, et al. Silk fibroin microneedle patches for the sustained release of levonorgestrel. ACS Appl Bio Mater. 2020;3(8):5375–5382. doi: 10.1021/acsabm.0c00671
  • Li W, Tang J, Terry RN, et al. Long-acting reversible contraception by effervescent microneedle patch. Sci Adv. 2019;5(11):eaaw8145. doi: 10.1126/sciadv.aaw8145
  • Li W, Terry RN, Tang J, et al. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat Biomed Eng. 2019;3(3):220–229. doi: 10.1038/s41551-018-0337-4
  • Barnett SB, Ter Haar GR, Ziskin MC, et al. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med Biol. 2000;26(3):355–366. doi: 10.1016/S0301-5629(00)00204-0
  • Ghanem MA, Maxwell AD, Wang YN, et al. Noninvasive acoustic manipulation of objects in a living body. In: Proceedings of the National Academy of Sciences of the United States of America; 2020, 117. p. 16848–16855.
  • Brucks R, Nanavaty M, Jung D, et al. The effect of ultrasound on the in vitro penetration of ibuprofen through human-epidermis. Pharmaceut Res. 1989;6(8):697–701. doi: 10.1023/A:1015938522673
  • Levy D, Kost J, Meshulam Y, et al. Effect of ultrasound on transdermal drug delivery to rats and guinea pigs. J Clin Investig. 1989;83(6):2074–2078. doi: 10.1172/JCI114119
  • Machet L, Boucaud A. Phonophoresis: efficiency, mechanisms and skin tolerance. Int J Pharm. 2002;243(1–2):1–15. doi: 10.1016/S0378-5173(02)00299-5
  • Ita K. Recent progress in transdermal sonophoresis. Pharm Dev Technol. 2017;22(4):458–466. doi: 10.3109/10837450.2015.1116566
  • Herwadkar A, Sachdeva V, Taylor LF, et al. Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Int J Pharm. 2012;423(2):289–296. doi: 10.1016/j.ijpharm.2011.11.041
  • Argenziano M, Banche G, Luganini A, et al. Vancomycin-loaded nanobubbles: a new platform for controlled antibiotic delivery against methicillin-resistant staphylococcus aureus infections. Int J Pharm. 2017;523(1):176–188. doi: 10.1016/j.ijpharm.2017.03.033
  • Baji S, Hegde AR, Kulkarni M, et al. Skin permeation of gemcitabine hydrochloride by passive diffusion, iontophoresis and sonophoresis: In vitro and in vivo evaluations. J Drug Delivery Sci Technol. 2018;47:49–54. doi: 10.1016/j.jddst.2018.06.019
  • Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science. 1995;269(5225):850–853. doi: 10.1126/science.7638603
  • Ji YW, Zheng J, Geng ZL, et al. Controllable formation of bulk perfluorohexane nanodroplets by solvent exchange. Soft Matter. 2022;18(2):425–433. doi: 10.1039/D1SM01457A
  • Jin J, Yang L, Chen F, et al. Drug delivery system based on nanobubbles. Interdiscip Mater. 2022;1(4):471–494. doi: 10.1002/idm2.12050
  • Lea-Banks H, Hynynen K. Sub-millimetre precision of drug delivery in the brain from ultrasound-triggered nanodroplets. J Control Release. 2021;338:731–741. doi: 10.1016/j.jconrel.2021.09.014
  • Ma XT, Yao MN, Shi JY, et al. High intensity focused ultrasound-responsive and ultrastable cerasomal perfluorocarbon nanodroplets for alleviating tumor multidrug resistance and epithelial–mesenchymal transition. ACS Nano. 2020;14(11):15904–15918. doi: 10.1021/acsnano.0c07287
  • Spatarelu CP, Jandhyala S, Luke GP. Dual-drug loaded ultrasound-responsive nanodroplets for on-demand combination chemotherapy. Ultrasonics. 2023;133:107056. doi: 10.1016/j.ultras.2023.107056
  • Vlatakis S, Zhang WQ, Thomas S, et al. Effect of phase-change nanodroplets and ultrasound on blood–brain barrier permeability in vitro. Pharmaceutics. 2024;16(1):51. doi: 10.3390/pharmaceutics16010051
  • Xiao H, Li XX, Li B, et al. Sono-promoted drug penetration and extracellular matrix modulation potentiate sonodynamic therapy of pancreatic ductal adenocarcinoma. Acta Biomaterialia. 2023;161:265–274. doi: 10.1016/j.actbio.2023.02.038
  • Yin TH, Wang P, Li JG, et al. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials. 2013;34(18):4532–4543. doi: 10.1016/j.biomaterials.2013.02.067
  • Zhang WQ, Shi YH, Abd Shukor S, et al. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. Nanoscale. 2022;14(8):2943–2965. doi: 10.1039/D1NR07882H
  • Zhao YZ, Du LN, Lu CT, et al. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomed. 2013;8:1621–1633. doi: 10.2147/IJN.S43589
  • Jadoul A, Lecouturier N, Mesens J, et al. Transdermal alniditan delivery by skin electroporation. J Control Release. 1998;54(3):265–272. doi: 10.1016/S0168-3659(97)00195-8
  • Wu QH, Liang WQ, Bao JL, et al. Enhanced transdermal delivery of tetracaine by electroporation. Int J Pharm. 2000;202(1–2):121–124. doi: 10.1016/S0378-5173(00)00432-4
  • Vanbever R, Langers G, Montmayeur S, et al. Transdermal delivery of fentanyl: rapid onset of analgesia using skin electroporation. J Control Release. 1998;50(1–3):225–235. doi: 10.1016/S0168-3659(97)00147-8
  • Denet AR, Préat V. Transdermal delivery of timolol by electroporation through human skin. J Control Release. 2003;88(2):253–262. doi: 10.1016/S0168-3659(03)00010-5
  • Sen A, Daly ME, Hui SW. Transdermal insulin delivery using lipid enhanced electroporation. Biochim Biophys Acta, Biomembr. 2002;1564(1):5–8. doi: 10.1016/S0005-2736(02)00453-4
  • Blagus T, Markelc B, Cemazar M, et al. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery. J Control Release. 2013;172(3):862–871. doi: 10.1016/j.jconrel.2013.09.030
  • Escobar-Chávez JJ, Bonilla-Martínez D, Villegas-González MA, et al. The use of sonophoresis in the administration of drugs throughout the skin. J Pharm Pharm Sci. 2009;12(1):88–115. doi: 10.18433/J3C30D
  • Murthy SN, Sen A, Zhao YL, et al. Temperature influences the postelectroporation permeability state of the skin. J Pharmaceut sci. 2004;93(4):908–915. doi: 10.1002/jps.20016
  • Lin SZ, Li B, Lan GH, et al. Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer. In: Proceedings of the National Academy of Sciences of the United States of America; 2017, 114. p. 8157–8162.
  • Xue SL, Li B, Feng XQ, et al. Biochemomechanical poroelastic theory of avascular tumor growth. J Mech Phys Solids. 2016;94:409–432. doi: 10.1016/j.jmps.2016.05.011
  • Xue SL, Li B, Feng XQ, et al. A non-equilibrium thermodynamic model for tumor extracellular matrix with enzymatic degradation. J Mech Phys Solids. 2017;104:32–56. doi: 10.1016/j.jmps.2017.04.002
  • Xue SL, Yin SF, Li B, et al. Biochemomechanical modeling of vascular collapse in growing tumors. J Mech Phys Solids. 2018;121:463–479. doi: 10.1016/j.jmps.2018.08.009
  • Yin SF, Xue SL, Li B, et al. Bio-chemo-mechanical modeling of growing biological tissues: finite element method. Int J Non Linear Mech. 2019;108:46–54. doi: 10.1016/j.ijnonlinmec.2018.10.004
  • Chen X, Li Y, Guo M, et al. Polymerization force-regulated actin filament-Arp2/3 complex interaction dominates self-adaptive cell migrations. In: Proceedings of the National Academy of Sciences of the United States of America; 2023, 120. p. e2306512120.
  • Lin SZ, Ye S, Xu GK, et al. Dynamic migration modes of collective cells. Biophys J. 2018;115(9):1826–1835. doi: 10.1016/j.bpj.2018.09.010
  • Chizmadzhev YA, Zarnitsin VG, Weaver JC, et al. Mechanism of electroinduced ionic species transport through a multilamellar lipid system. Biophys J. 1995;68(3):749–765. doi: 10.1016/S0006-3495(95)80250-X
  • Li XL, Huang XS, Mo JS, et al. A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv Sci. 2021;8(16):2100827. doi: 10.1002/advs.202100827
  • Yang JB, Zheng ST, Ma DY, et al. Masticatory system–inspired microneedle theranostic platform for intelligent and precise diabetic management. Sci Adv. 2022;8(50):eabo6900. doi: 10.1126/sciadv.abo6900
  • Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res. 2011;44(10):1094–1104. doi: 10.1021/ar200105p
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10:975–999. doi: 10.2147/IJN.S68861
  • Cabane E, Zhang XY, Langowska K, et al. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases. 2012;7(1):9. doi: 10.1007/s13758-011-0009-3
  • Casalini T, Rossi F, Castrovinci A, et al. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol. 2019;7:259. doi: 10.3389/fbioe.2019.00259
  • Feng SS. New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now? Nanomedicine. 2006;1(3):297–309. doi: 10.2217/17435889.1.3.297
  • Jochum FD, Theato P. Temperature- and light-responsive smart polymer materials. Chem Soc Rev. 2013;42(17):7468–7483. doi: 10.1039/C2CS35191A
  • Khandare J, Calderón M, Dagia NM, et al. Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev. 2012;41(7):2824–2848. doi: 10.1039/C1CS15242D
  • Lian HY, Hu M, Liu CH, et al. Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chem Comm. 2012;48(42):5151–5153. doi: 10.1039/c2cc31708g
  • Liu YT, Li K, Pan J, et al. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials. 2010;31(2):330–338. doi: 10.1016/j.biomaterials.2009.09.036
  • Zhang XD, Dong YC, Zeng XW, et al. The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials. 2014;35(6):1932–1943. doi: 10.1016/j.biomaterials.2013.10.034
  • Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Delivery. 2010;7(6):753–763. doi: 10.1517/17425241003777010
  • Bhumkar DR, Joshi HM, Sastry M, et al. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007;24(8):1415–1426. doi: 10.1007/s11095-007-9257-9
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–1782. doi: 10.1039/b806051g
  • Kumar A, Zhang X, Liang XJ. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol Adv. 2013;31(5):593–606. doi: 10.1016/j.biotechadv.2012.10.002
  • Kulkarni JA, Darjuan MM, Mercer JE, et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano. 2018;12(5):4787–4795. doi: 10.1021/acsnano.8b01516
  • Tenchov R, Bird R, Curtze AE, et al. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982–17015. doi: 10.1021/acsnano.1c04996
  • Thi TTH, Suys EJA, Lee JS, et al. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines. 2021;9(4):359. doi: 10.3390/vaccines9040359
  • Elnaggar YSR, El-Massik MA, Abdallah OY. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles. Int J Nanomed. 2011;6:3195–3205. doi: 10.2147/IJN.S25825
  • Han YQ, Zhang Y, Li DN, et al. Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomed. 2014;9:4107–4115. doi: 10.2147/IJN.S67770
  • Rizwanullah M, Ahmad J, Amin S. Nanostructured lipid carriers: a novel platform for chemotherapeutics. Curr Drug Deliv. 2016;13(1):4–26. doi: 10.2174/1567201812666150817124133
  • Shao ZY, Shao JY, Tan BX, et al. Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomed. 2015;10:1223–1233. doi: 10.2147/IJN.S77837
  • Taratula O, Kuzmov A, Shah M, et al. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release. 2013;171(3):349–357. doi: 10.1016/j.jconrel.2013.04.018
  • Zhao X, Tang DY, Yang T, et al. Facile preparation of biocompatible nanostructured lipid carrier with ultra-small size as a tumor-penetration delivery system. Colloids Surf B Biointerfaces. 2018;170:355–363. doi: 10.1016/j.colsurfb.2018.06.017
  • Chen WH, Luo GF, Vázquez-González M, et al. Glucose-responsive metal–organic-framework nanoparticles act as “Smart” Sense-and-Treat Carriers. ACS Nano. 2018;12(8):7538–7545. doi: 10.1021/acsnano.8b03417
  • He CB, Liu DM, Lin WB. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem Rev. 2015;115(19):11079–11108. doi: 10.1021/acs.chemrev.5b00125
  • Simon-Yarza T, Mielcarek A, Couvreur P, et al. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mater. 2018;30(37):1707365. doi: 10.1002/adma.201707365
  • Chen ZW, Wang ZJ, Gu ZB, et al. Accounts of chemical research. Acc Chem Res. 2019;52(5):1255–1264. doi: 10.1021/acs.accounts.9b00079
  • Palivan CG, Goers R, Najer A, et al. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev. 2016;45(2):377–411. doi: 10.1039/C5CS00569H
  • Tai WY, Mo R, Di J, et al. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules. 2014;15(10):3495–3502. doi: 10.1021/bm500364a
  • Yu JC, Zhang YQ, Ye YQ, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. In: Proceedings of the National Academy of Sciences of the United States of America; 2015, 112. p. 8260–8265.
  • Segel M, Lash B, Song JW, et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science. 2021;373(6557):882–889. doi: 10.1126/science.abg6155
  • Kreitz J, Friedrich MJ, Guru A, et al. Programmable protein delivery with a bacterial contractile injection system. Nature. 2023;616(7956):357–364. doi: 10.1038/s41586-023-05870-7
  • Shen C, Li YC, Zeng ZA, et al. Systemic administration with bacteria-inspired nanosystems for targeted oncolytic therapy and antitumor immunomodulation. ACS Nano. 2023;17(24):25638–25655. doi: 10.1021/acsnano.3c10302
  • Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Phys Rev E. 2004;69(3):031903. doi: 10.1103/PhysRevE.69.031903
  • Gao HJ, Shi WD, Freund LB. Mechanics of receptor-mediated endocytosis. In: Proceedings of the National Academy of Sciences of the United States of America; 2005, 102. p. 9469–9474.
  • Yi X, Shi XH, Gao HJ. Cellular uptake of elastic nanoparticles. Phys Rev Lett. 2011;107(9):098101. doi: 10.1103/PhysRevLett.107.098101
  • Wang JL, Yao HM, Shi XH. Cooperative entry of nanoparticles into the cell. J Mech Phys Solids. 2014;73:151–165. doi: 10.1016/j.jmps.2014.09.006
  • Yi X, Gao HJ. Incorporation of soft particles into lipid vesicles: effects of particle size and elasticity. Langmuir. 2016;32(49):13252–13260. doi: 10.1021/acs.langmuir.6b03184
  • Garikipati K, Arruda EM, Grosh K, et al. A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J Mech Phys Solids. 2004;52(7):1595–1625. doi: 10.1016/j.jmps.2004.01.004
  • Alt S, Ganguly P, Salbreux G. Vertex models: from cell mechanics to tissue morphogenesis. Philos Trans R Soc London, Ser B. 2017;372(1720):20150520. doi: 10.1098/rstb.2015.0520
  • Gao Y, Xue SL, Meng QH, et al. Multiscale fracture mechanics model for the dorsal closure in Drosophila embryogenesis. J Mech Phys Solids. 2019;127:154–166. doi: 10.1016/j.jmps.2019.03.012
  • Bellomo N, Bellouquid A, Nieto J, et al. Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. Math Models & Methods In Appl Sci. 2010;20(7):1179–1207. doi: 10.1142/S0218202510004568
  • Wagner JG. History of pharmacokinetics. Pharmacol Therapeut. 1981;12(3):537–562. doi: 10.1016/0163-7258(81)90097-8
  • Teorell T. Kinetics of distribution of substances administered to the body I the extravascular modes of administration. Archives Int De Pharmacodyn Et De Ther. 1937;57:205–225.
  • Teorell T. Kinetics of distribution of substances administered to the body II the intravascular modes of administration. Archives Int De Pharmacodyn Et De Ther. 1937;57:226–240.
  • Cutler DJ. Theory of the mean absorption time, an adjunct to conventional bioavailability studies. J Pharm Pharmacol. 1978;30(1):476–478. doi: 10.1111/j.2042-7158.1978.tb13296.x
  • Perl W, Samuel P. Input-output analysis for total input rate and total traced mass of body cholesterol in man. Circ Res. 1969;25(2):191–199. doi: 10.1161/01.RES.25.2.191
  • Riegelman S, Collier P. The application of statistical moment theory to the evaluation ofin vivo dissolution time and absorption time. J Pharmacokinet Biopharm. 1980;8(5):509–534. doi: 10.1007/BF01059549
  • Bellman R, Jacquez JA, Kalaba R. Some mathematical aspects of chemotherapy: I. One-organ models. Bull Math Biophys. 1960;22(2):181–198. doi: 10.1007/BF02478005
  • Himmelstein KJ, Lutz RJ. A review of the applications of physiologically based pharmacokinetic modeling. J Pharmacokinet Biopharm. 1979;7(2):127–145. doi: 10.1007/BF01059734
  • Widmark E, Tandberg J. Uber die bedingungen fur die akkumulation indifferenter narkoliken theoretische bereckerunger. Biochem Z. 1924;147:358–369.
  • Michaelis L, Menten ML. Die kinetik der invertinwirkung. Biochem Z. 1913;49:352.
  • Hedaya MA. Basic pharmacokinetics. 2nd ed. Boca Raton: Taylor & Francis/CRC Press; 2012; p xxxiii, 561 p.
  • Poon W, Kingston BR, Ouyang B, et al. A framework for designing delivery systems. Nat Nanotech. 2020;15(10):819–829. doi: 10.1038/s41565-020-0759-5
  • Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release. 2014;190:15–28. doi: 10.1016/j.jconrel.2014.03.053
  • Ye YQ, Yu JC, Wen D, et al. Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev. 2018;127:106–118. doi: 10.1016/j.addr.2018.01.015
  • Li W, Tang J, Terry RN, et al. Long-acting reversible contraception by effervescent microneedle patch. Sci Adv. 2019;5(11):5. doi: 10.1126/sciadv.aaw8145
  • Bali NR, Salve PS. Selegiline nanoparticle embedded transdermal film: an alternative approach for brain targeting in Parkinson’s disease. J Drug Delivery Sci Technol. 2019;54:101299. doi: 10.1016/j.jddst.2019.101299
  • Kim JY, Han MR, Kim YH, et al. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur J Pharm Biopharm. 2016;105:148–155. doi: 10.1016/j.ejpb.2016.06.006
  • Zhao ZQ, Liang L, Hu LF, et al. Subcutaneous implantable microneedle system for the treatment of Alzheimer’s disease by delivering donepezil. Biomacromolecules. 2022;23(12):5330–5339. doi: 10.1021/acs.biomac.2c01155
  • Courtenay AJ, McAlister E, McCrudden MTC, et al. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery. J Control Release. 2020;322:177–186. doi: 10.1016/j.jconrel.2020.03.026
  • Kumar R, Sinha VR, Dahiya L, et al. Transdermal delivery of duloxetine-sulfobutylether-β-cyclodextrin complex for effective management of depression. Int J Pharm. 2021;594:120129. doi: 10.1016/j.ijpharm.2020.120129
  • Zhao PF, Le ZC, Liu LX, et al. Therapeutic delivery to the brain via the lymphatic vasculature. Nano Lett. 2020;20(7):5415–5420. doi: 10.1021/acs.nanolett.0c01806
  • Bhatnagar S, Bankar NG, Kulkarni MV, et al. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int J Pharm. 2019;556:263–275. doi: 10.1016/j.ijpharm.2018.12.022
  • El Moussaoui S, Fernández-Campos F, Alonso C, et al. Topical mucoadhesive alginate-based hydrogel loading ketorolac for pain management after pharmacotherapy, ablation, or surgical removal in condyloma acuminata. Gels. 2021;7(1):8. doi: 10.3390/gels7010008
  • Sahu P, Kashaw SK, Sau S, et al. Discovering pH triggered charge rebound surface modulated topical nanotherapy against aggressive skin papilloma. Mater Sci Eng C-Mater Biol Appl. 2020;107:110263. doi: 10.1016/j.msec.2019.110263
  • Dai WW, Wang CH, Yu CH, et al. Preparation of a mixed-matrix hydrogel of vorinostat for topical administration on the rats as experimental model. Eur J Pharm Sci. 2015;78:255–263. doi: 10.1016/j.ejps.2015.07.019
  • Dong WJ, Ye J, Wang WJ, et al. Self-assembled lecithin/chitosan nanoparticles based on phospholipid complex: a feasible strategy to improve entrapment efficiency and transdermal delivery of poorly lipophilic drug. Int J Nanomed 2020, 15, 5629–5643. doi: 10.2147/IJN.S261162
  • Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41. doi: 10.1038/s41568-019-0205-x
  • Ahmed KS, Shan XT, Mao J, et al. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. Mater Sci Eng C-Mater Biol Appl. 2019;99:1448–1458. doi: 10.1016/j.msec.2019.02.095
  • Huang SH, Liu HL, Huang SS, et al. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. Carbohydr Polym. 2020;246:116650. doi: 10.1016/j.carbpol.2020.116650
  • Ruan WY, Zhai YH, Yu KY, et al. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int J Pharm. 2018;553(1–2):298–309. doi: 10.1016/j.ijpharm.2018.10.043
  • Pan JT, Ruan WY, Qin MY, et al. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep-UK. 2018;8(1):1117. doi: 10.1038/s41598-018-19463-2
  • Zhang YJ, Davis DA, AboulFotouh K, et al. Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev. 2021;172:183–210. doi: 10.1016/j.addr.2021.02.011
  • Pearton M, Saller V, Coulman SA, et al. Microneedle delivery of plasmid DNA to living human skin: formulation coating, skin insertion and gene expression. J Control Release. 2012;160(3):561–569. doi: 10.1016/j.jconrel.2012.04.005
  • Sharma P, Hu-Lieskovan S, Wargo JA, et al. Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017;168(4):707–723. doi: 10.1016/j.cell.2017.01.017
  • Chen GJ, Chen ZT, Wen D, et al. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. In: Proceedings of the National Academy of Sciences of the United States of America; 2020, 117. p. 3687–3692.
  • Kim NW, Kim SY, Lee JE, et al. Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano. 2018;12(10):9702–9713. doi: 10.1021/acsnano.8b04146
  • Chen MC, Lai KY, Ling MH, et al. Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomaterialia. 2018;65:66–75. doi: 10.1016/j.actbio.2017.11.004
  • Xu XK, Guo L, Liu H, et al. Stretchable electronic facial masks for skin electroporation. Adv Funct Mater. 2024;34:2311144. doi: 10.1002/adfm.202311144
  • Li S, Xu JW, Li R, et al. Stretchable electronic facial masks for sonophoresis. ACS Nano. 2022;16(4):5961–5974. doi: 10.1021/acsnano.1c11181
  • Yu CC, Shah AS, Amiri N, et al. A Conformable ultrasound patch for cavitation-enhanced transdermal cosmeceutical delivery. Adv Mater. 2023;35(23):2300066. doi: 10.1002/adma.202300066
  • Hu HJ, Zhu X, Wang CH, et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci Adv. 2018;4(3):eaar3979. doi: 10.1126/sciadv.aar3979
  • Hu HJ, Huang H, Li MH, et al. A wearable cardiac ultrasound imager. Nature. 2023;613(7945):667–675. doi: 10.1038/s41586-022-05498-z
  • Lin MY, Zhang ZY, Gao XX, et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat Biotechnol. 2024;42(3):448–457. doi: 10.1038/s41587-023-01800-0
  • Wang CH, Chen XY, Wang L, et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science. 2022;377(6605):517–523. doi: 10.1126/science.abo2542
  • Chung HU, Rwei AY, Hourlier-Fargette A, et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nature Med. 2020;26(3):418–429. doi: 10.1038/s41591-020-0792-9
  • Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016;529(7587):509–514. doi: 10.1038/nature16521
  • Li S, Liu GD, Li R, et al. Contact-resistance-free stretchable strain sensors with high repeatability and linearity. ACS Nano. 2022;16(1):541–553. doi: 10.1021/acsnano.1c07645
  • Bai HD, Li S, Barreiros J, et al. Stretchable distributed fiber-optic sensors. Science. 2020;370(6518):848–852. doi: 10.1126/science.aba5504
  • Mickle AD, Won SM, Noh KN, et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature. 2019;565(7739):361–365. doi: 10.1038/s41586-018-0823-6
  • Niu SM, Matsuhisa N, Beker L, et al. A Wireless body area sensor network based on stretchable passive tags. Nat Electron. 2019;2(8):361–368. doi: 10.1038/s41928-019-0286-2
  • Zhou ZH, Chen K, Li XS, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron. 2020;3(9):571–578. doi: 10.1038/s41928-020-0428-6
  • Bai NN, Wang L, Wang Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat Commun. 2020;11(1):209. doi: 10.1038/s41467-019-14054-9
  • Mannsfeld SCB, Tee BCK, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater. 2010;9(10):859–864. doi: 10.1038/nmat2834
  • Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat Commun. 2015;6(1):7461. doi: 10.1038/ncomms8461
  • Zhang F, Zang Y, Huang D, et al. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun. 2015;6(1):8356. doi: 10.1038/ncomms9356
  • Pang C, Koo JH, Nguyen A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv Mater. 2015;27(4):634–640. doi: 10.1002/adma.201403807
  • Khan Y, Han D, Pierre A, et al. A flexible organic reflectance oximeter array. In: Proceedings of the National Academy of Sciences of the United States of America; 2018, 115. p. E11015–E11024.
  • Schwartz G, Tee BC, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Flexible polymer transistors with high pressure sensitivity for applications in electron skin and health monitoring. Nat Commun. 2013;4(1):1859. doi: 10.1038/ncomms2832