0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dispersion effect of nano-structure pyrolytic carbon on mechanical, electrical, and microstructural characteristics of cement mortar composite

&
Received 14 Jun 2024, Accepted 26 Jul 2024, Published online: 02 Aug 2024

References

  • Praveenkumar TR, Vijayalakshmi MM, Meddah MS. Strengths and durability performances of blended cement concrete with TiO2 nanoparticles and rice husk ash, constr. Build Mater. 2019;217:343–351. doi: 10.1016/j.conbuildmat.2019.05.045
  • Lu Z, Hou D, Meng L, et al. Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Adv. 2015;5(122):100598. doi: 10.1039/c5ra18602a
  • Xiao M, Xi J, Qiu P, et al. Evaluation of tensile properties and cracking potential evolution of fly ash-cement mortar at early age based on digital image correlation method. Constr Build Mater. 2024;412:134855. doi: 10.1016/j.conbuildmat.2023.134855
  • McCarter WJ, Starrs G, Chrisp TM. Electrical conductivity, diffusion, and permeability of Portland cement-based mortars. Cem Concr Res. 2000;30(9):1395–1400. doi: 10.1016/S0008-8846(00)00281-7
  • Rahman I, Singh P, Dev N, et al. Improvements in the engineering properties of cementitious composites using nano-sized cement and nano-sized additives. Materials (Basel). 2022;15(22):8066. doi: 10.3390/ma15228066
  • Dehghani A, Aslani F. The effect of shape memory alloy, steel, and carbon fibres on fresh, mechanical, and electrical properties of self-compacting cementitious composites. Cem Concr Compos. 2020;112:103659. doi: 10.1016/j.cemconcomp.2020.103659
  • Jin Y, Xia N, Gerhardt RA. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation. Nano Energy. 2016;30:407–416. doi: 10.1016/j.nanoen.2016.10.033
  • Turk K, Cicek N, Katlav M, et al. Electrical conductivity and heating performance of hybrid steel fiber-reinforced SCC: the role of high-volume fiber and micro fiber length. J Build Eng. 2023;76:107392. doi: 10.1016/j.jobe.2023.107392
  • Santillán N, Speranza S, Torrents JM, et al. Evaluation of conductive concrete made with steel slag aggregates, constr. Build Mater. 2022;360:129515. doi: 10.1016/j.conbuildmat.2022.129515
  • Lim S, Lee W, Choo H, et al. Utilization of high carbon fly ash and copper slag in electrically conductive controlled low strength material, constr. Build Mater. 2017;157:42–50. doi: 10.1016/j.conbuildmat.2017.09.071
  • Hambach M, Moller H, Neumann T, et al. Carbon fibre reinforced cement-based composites as smart floor heating materials, compos. Part B. 2016;90:465–470. doi: 10.1016/j.compositesb.2016.01.043
  • Gao S, Wang Q, Guo H, et al. High strength and high electrical conductivity Cu composites reinforced by SiO2 aerogel particles. J Mater Res Technol. 2023;24:2346–2356. doi: 10.1016/j.jmrt.2023.03.153
  • Li J, Qin Q, Sun J, et al. Mechanical and conductive performance of electrically conductive cementitious composite using graphite, steel slag, and GGBS. Struct Concr. 2022;23:533–547. doi: 10.1002/suco.202000617
  • Jo KS, Il Kim N, Seok Kim K, et al. A study on the electrical and physical properties of mortar incorporating carbon black. J Korean Ceram Soc. 2021;58(4):414–421. doi: 10.1007/s43207-021-00111-x
  • Han J, Pan J, Cai J, et al. A review on carbon-based self-sensing cementitious composites. Constr Build Mater. 2020;265:120764. doi: 10.1016/j.conbuildmat.2020.120764
  • Hemalatha T, Sangoju B, Vasudevan P. Investigation of the influence of unburnt carbon and aggregate type on electrical resistivity of cement mortar. J Inst Eng Ser A. 2022;103(3):797–802. doi: 10.1007/s40030-022-00644-2
  • Ding S, Xiang Y, Ni Y-Q, et al. In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures. Nano Today. 2022;42:101438. doi: 10.1016/j.nantod.2022.101438
  • Qin H, Ding S, Ashour A, et al. Revolutionizing infrastructure: the evolving landscape of electricity-based multifunctional concrete from concept to practice, Prog. Mater Sci. 2024;145:101310. doi: 10.1016/j.pmatsci.2024.101310
  • Ding SQ, Wang XY, Qiu LS, et al. Self-sensing cementitious composites with hierarchical carbon fiber-carbon nanotube composite fillers for crack development monitoring of a maglev girder. Small. 2023;19(9). doi: 10.1002/smll.202206258
  • Kanagasundaram K, Solaiyan E. Smart cement-sensor composite: the evolution of nanomaterial in developing sensor for structural integrity. Concr. 2023;24(5):6297–6337. doi: 10.1002/suco.202201145
  • Onaizi AM, Huseien GF, Lim NHAS, et al. Effect of nanomaterials inclusion on sustainability of cement-based concretes: a comprehensive review. Constr Build Mater. 2021;306:124850. doi: 10.1016/j.conbuildmat.2021.124850
  • Birenboim M, Nadiv R, Alatawna A, et al. Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites, compos. Part B Eng. 2019;161:68–76. doi: 10.1016/j.compositesb.2018.10.030
  • Raveendran N, Vasugi K. Synergistic effect of nano silica and metakaolin on mechanical and microstructural properties of concrete: an approach of response surface methodology, case stud. Constr Mater. 2024;20:e03196. doi: 10.1016/j.cscm.2024.e03196
  • Mansouri Sarvandani M, Mahdikhani M, Aghabarati H, et al. Effect of functionalized multi-walled carbon nanotubes on mechanical properties and durability of cement mortars. J Build Eng. 2021;41:102407. doi: 10.1016/j.jobe.2021.102407
  • Ata S, Hayashi Y, Nguyen Thi TB, et al. Improving thermal durability and mechanical properties of poly(ether ether ketone) with single-walled carbon nanotubes. Polym (Guildf). 2019;176:60–65. doi: 10.1016/j.polymer.2019.05.028
  • Ali Z, Yaqoob S, Yu J, et al. Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications. Compos Part C Open Access. 2024;13:100434. doi: 10.1016/j.jcomc.2024.100434
  • Ren Z, Sun J, Tang W, et al. Mechanical and electrical properties investigation for electrically conductive cementitious composite containing nano-graphite activated magnetite. J Build Eng. 2022;57:104847. doi: 10.1016/j.jobe.2022.104847
  • Kırgız MS. Green cement composite concept reinforced by graphite nano-engineered particle suspension for infrastructure renewal material, compos. Part B Eng. 2018;154:423–429. doi: 10.1016/j.compositesb.2018.09.012
  • Zhang P, Wang M, Han X, et al. A review on properties of cement-based composites doped with graphene. J Build Eng. 2023;70:106367. doi: 10.1016/j.jobe.2023.106367
  • Dung NT, Su M, Watson M, et al. Effects of using aqueous graphene on behavior and mechanical performance of cement-based composites, constr. Build Mater. 2023;368:130466. doi: 10.1016/j.conbuildmat.2023.130466
  • Nalon GH, Ribeiro JCL, de Araújo END, et al. Effects of different kinds of carbon black nanoparticles on the piezoresistive and mechanical properties of cement-based composites. J Build Eng. 2020;32:101724. doi: 10.1016/j.jobe.2020.101724
  • Liu L, Xu J, Yin T, et al. Improving electrical and piezoresistive properties of cement-based composites by combined addition of nano carbon black and nickel nanofiber. J Build Eng. 2022;51:104312. doi: 10.1016/j.jobe.2022.104312
  • Wang X, Feng D, Meng J, et al. Double percolation phenomenon of carbon nanotube/cement composites as piezoresistivity sensing elements in concrete with exposure to salt environment. Cem Concr Compos. 2024;147:105401. doi: 10.1016/j.cemconcomp.2023.105401
  • Mesquita E, Sousa I, Vieira M, et al. Investigation of the electrical sensing properties of cementitious composites produced with multi-wall carbon nanotubes dispersed in NaOH. J Build Eng. 2023;77:107496. doi: 10.1016/j.jobe.2023.107496
  • Wang H, Gao X, Wang R. The influence of rheological parameters of cement paste on the dispersion of carbon nanofibers and self-sensing performance, constr. Build Mater. 2017;134:673–683. doi: 10.1016/j.conbuildmat.2016.12.176
  • Maga D, Aryan V, Blomer J. A comparative life cycle assessment of tyre recycling using pyrolysis compared to conventional end-of-life pathways. Resour Conserv Recycl. 2023;199:107255. doi: 10.1016/j.resconrec.2023.107255
  • Martínez JD, Cardona-Uribe N, Murillo R, et al. Carbon black recovery from waste tire pyrolysis by demineralization: production and application in rubber compounding. Waste Manag. 2019;85:574–584. doi: 10.1016/j.wasman.2019.01.016
  • Maroufi S, Mayyas M, Sahajwalla V. Nano-carbons from waste tyre rubber: an insight into structure and morphology. Waste Manag. 2017;69:110–116. doi: 10.1016/j.wasman.2017.08.020
  • Sardar H, Khushnood RA, Khaliq W, et al. Influence of pyrolytic waste tire residue on the residual performance of high strength concrete exposed to elevated temperatures. J Build Eng. 2022;54:104657. doi: 10.1016/j.jobe.2022.104657
  • Paul S, Rahaman M, Ghosh SK, et al. Recycling of waste tire by pyrolysis to recover carbon black: an alternative reinforcing filler. J Mater Cycles Waste Manag. 2023;25(3):1470–1481. doi: 10.1007/s10163-023-01635-6
  • Mahmood A, Khushnood RA, Zeeshan M. Pyrolytic carbonaceous reinforcements for enhanced electromagnetic and fracture response of cementitious composites. J Clean Prod. 2020;248:119288. doi: 10.1016/j.jclepro.2019.119288
  • Khalid A, Khushnood RA, Ali Memon S. Pyrolysis as an alternate to open burning of crop residue and scrap tires: greenhouse emissions assessment and mechanical performance investigation in concrete. J Clean Prod. 2022;365:132688. doi: 10.1016/j.jclepro.2022.132688
  • Ryms M, Januszewicz K, Haustein E, et al. Thermal properties of a cement composite containing phase change materials (PCMs) with post-pyrolytic char obtained from spent tyres as a carrier. Energy. 2022;239:121936. doi: 10.1016/j.energy.2021.121936
  • Wang H, Lu G, Feng S, et al. Characterization of bitumen modified with pyrolytic carbon black from scrap tires. Sustain. 2019;11(6):1631. doi: 10.3390/su11061631
  • Gil-Martín LM, Rodríguez-Suesca AE, Fernández-Ruiz MA, et al. Cyclic behavior of RC beam-column joints with epoxy resin and ground tire rubber as partial cement replacement. Constr Build Mater. 2019;211:659–674. doi: 10.1016/j.conbuildmat.2019.03.216
  • Al-Subari L, Ekinci A, Aydın E. The utilization of waste rubber tire powder to improve the mechanical properties of cement-clay composites. Constr Build Mater. 2021;300:124306. doi: 10.1016/j.conbuildmat.2021.124306
  • Zhu Y, Zhang Z, Yang Y, et al. Measurement and correlation of ductility and compressive strength for engineered cementitious composites (ECC) produced by binary and ternary systems of binder materials: fly ash, slag, silica fume and cement. Constr Build Mater. 2014;68:192–198. doi: 10.1016/j.conbuildmat.2014.06.080
  • Gao P, Wang Y, Wang Y, et al. Influence of waste tire rubber powder, polypropylene fiber and their binary blends on mitigating alkali-silica reaction. J Build Eng. 2023;67:105951. doi: 10.1016/j.jobe.2023.105951
  • R SLR, Domínguez O, A JHD, et al. Synergistic effects of rubber-tire-powder and fluorogypsum in cement-based composite. 2021. doi: 10.1016/j.cscm.2020.e00471
  • Nasibulina LI, Anoshkin IV, Nasibulin AG, et al. Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite. J Nanomater. 2012;2012:1–6. doi: 10.1155/2012/169262
  • Chaipanich A, Nochaiya T, Wongkeo W, et al. Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Sci Eng A. 2010;527(4–5):1063–1067. doi: 10.1016/j.msea.2009.09.039
  • Nochaiya T, Tolkidtikul P, Singjai P, et al. Microstructure and characterizations of portland-carbon nanotubes pastes. Adv Mater Res. 2008;55-57(55):549–552. doi: 10.4028/www.scientific.net/amr.55-57.549
  • Du H, Pang SD. Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites, constr. Build Mater. 2018;167:403–413. doi: 10.1016/j.conbuildmat.2018.02.046
  • Yun S, Kim J. Sonication time effect on MWNT/PANI-EB composite for hybrid electro-active paper actuator, Synth. Synth Met. 2007;157(13–15):523–528. doi: 10.1016/j.synthmet.2007.05.016
  • Collins F, Lambert J, Duan WH. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–opc paste mixtures. Cem Concr Compos. 2012;34(2):201–207. doi: 10.1016/j.cemconcomp.2011.09.013
  • Chuah S, Li W, Chen SJ, et al. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Constr Build Mater. 2018;161:519–527. doi: 10.1016/j.conbuildmat.2017.11.154
  • Juenger MCG, Siddique R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem Concr Res. 2015;78:71–80. doi: 10.1016/j.cemconres.2015.03.018
  • Vashistha P, Oinam Y, Pyo S. Valorization of waste concrete powder (WCP) through silica fume incorporation to enhance the reactivity and hydration characteristics. Dev Built Environ. 2023;16:100272. doi: 10.1016/j.dibe.2023.100272
  • Zhang Z, Zhang B, Yan P. Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete. Constr Build Mater. 2016;105:82–93. doi: 10.1016/j.conbuildmat.2015.12.045
  • Bai S, Jiang L, Xu N, et al. Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume. Constr Build Mater. 2018;164:433–441. doi: 10.1016/j.conbuildmat.2017.12.176
  • Kim HK, Nam IW, Lee HK. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Compos Struct. 2014;107:60–69. doi: 10.1016/j.compstruct.2013.07.042
  • Li X, Korayem AH, Li C, et al. Incorporation of graphene oxide and silica fume into cement paste: a study of dispersion and compressive strength. Constr Build Mater. 2016;123:327–335. doi: 10.1016/j.conbuildmat.2016.07.022
  • Dong W, Li W, Guo Y, et al. Effects of silica fume on physicochemical properties and piezoresistivity of intelligent carbon black-cementitious composites. Constr Build Mater. 2020;259:120399. doi: 10.1016/j.conbuildmat.2020.120399
  • Zhang L, Ding S, Li L, et al. Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Compos Part A ApplSci Manuf. 2018;109:303–320. doi: 10.1016/j.compositesa.2018.03.020
  • Mishra G. Co-effect of carbon nanotube and nano-sized silica on dispersion and mechanical performance in cementitious system. Diam Relat Mater. 2022;127:109162. doi: 10.1016/j.diamond.2022.109162
  • Karthikeyan N, Elavenil S. Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials. Adv Nano Res. 2024;16:53–69. doi: 10.12989/anr.2024.16.1.053
  • Hu H, Yu A, Kim E, et al. Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes. J Phys Chem B. 2005;109(23):11520–11524. doi: 10.1021/jp050781w
  • Srinivasan S, Barbhuiya SA, Charan D, et al. Characterising cement–superplasticiser interaction using zeta potential measurements. Constr Build Mater. 2010;24(12):2517–2521. doi: 10.1016/j.conbuildmat.2010.06.005
  • Dinesh A, Suji D, Pichumani M. Electro-mechanical investigations of steel fiber reinforced self-sensing cement composite and their implications for real-time structural health monitoring. J Build Eng. 2022;51:104343. doi: 10.1016/j.jobe.2022.104343
  • Han B, Yu X, Kwon E, et al. Effects of CNT concentration level and water/cement ratio on the piezoresistivity of CNT/cement composites. J Compos Mater. 2012;46(1):19–25. doi: 10.1177/0021998311401114
  • Yu K, Ding Y, Zhang YX. Size effects on tensile properties and compressive strength of engineered cementitious composites. Cem Concr Compos. 2020;113:103691. doi: 10.1016/j.cemconcomp.2020.103691
  • Chung DDL. Self-sensing concrete: from resistance-based sensing to capacitance-based sensing. Int J Smart Nano Mater. 2021;12(1):1–19. doi: 10.1080/19475411.2020.1843560
  • Ozbulut OE, Jiang Z, Harris DK. Exploring scalable fabrication of self-sensing cementitious composites with graphene nanoplatelets. Smart Mater Struct. 2018;27(11):115029. doi: 10.1088/1361-665X/aae623
  • Wang Y, Zhang L. Development of self-sensing cementitious composite incorporating hybrid graphene nanoplates and carbon nanotubes for structural health monitoring. Sensors Actuators A Phys. 2022;336:113367. doi: 10.1016/j.sna.2022.113367
  • Huang ZD, Zhang B, Liang R, et al. Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon NY. 2012;50(11):4239–4251. doi: 10.1016/j.carbon.2012.05.006
  • Wang M, Zhang L, Li A, et al. Comparative pyrolysis behaviors of tire tread and side wall from waste tire and characterization of the resulting chars. J Environ Manage. 2019;232:364–371. doi: 10.1016/j.jenvman.2018.10.091
  • Jiang G, Pan J, Deng W, et al. Recovery of high pure pyrolytic carbon black from waste tires by dual acid treatment. J Clean Prod. 2022;374:133893. doi: 10.1016/j.jclepro.2022.133893
  • Long WJ, Xiao BX, Gu YC, et al. Micro- and macro-scale characterization of nano-SiO2 reinforced alkali activated slag composites. Mater Charact. 2018;136:111–121. doi: 10.1016/j.matchar.2017.12.013
  • Kim GM, Nam IW, Yoon HN, et al. Effect of superplasticizer type and siliceous materials on the dispersion of carbon nanotube in cementitious composites. Compos Struct. 2018;185:264–272. doi: 10.1016/j.compstruct.2017.11.011
  • Kim GM, Kil T, Lee HK. A novel physicomechanical approach to dispersion of carbon nanotubes in polypropylene composites. Compos Struct. 2021;258:1–8. doi: 10.1016/j.compstruct.2020.113377
  • Papanikolaou I, Ribeiro de Souza L, Litina C, et al. Investigation of the dispersion of multi-layer graphene nanoplatelets in cement composites using different superplasticiser treatments. Constr Build Mater. 2021;293:123543. doi: 10.1016/j.conbuildmat.2021.123543
  • Lin PC, Lin S, Wang PC, et al. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014;32:711–726. doi: 10.1016/j.biotechadv.2013.11.006
  • Dong W, Li W, Wang K, et al. Multifunctional cementitious composites with integrated self-sensing and self-healing capacities using carbon black and slaked lime. Ceram Int. 2022;48(14):19851–19863. doi: 10.1016/j.ceramint.2022.03.260
  • Öztürk O, Koçer M, Ünal A. Multifunctional behavior of composite beams incorporating hybridized carbon-based materials under cyclic loadings. Eng. Struct. 2022;250:113429. doi: 10.1016/j.engstruct.2021.113429
  • Wang L, Aslani F. Self-sensing performance of cementitious composites with functional fillers at macro, micro and nano scales. Constr Build Mater. 2022;314:125679 Contents. doi: 10.1016/j.conbuildmat.2021.125679
  • Wang L, Aslani F. Development of self-sensing cementitious composites incorporating CNF and hybrid CNF/CF. Constr Build Mater. 2021;273:1–19. doi: 10.1016/j.conbuildmat.2020.121659
  • Abolhasani A, Pachenari A, Mohammad Razavian S, et al. Towards new generation of electrode-free conductive cement composites utilizing nano carbon black. Constr Build Mater. 2022;323:126576. doi: 10.1016/j.conbuildmat.2022.126576
  • Wang L, Aslani F. Piezoresistivity performance of cementitious composites containing activated carbon powder, nano zinc oxide and carbon fibre. Constr Build Mater. 2021;278:122375. doi: 10.1016/j.conbuildmat.2021.122375
  • Han J, Cai J, Pan J, Sun Y. Study on the conductivity of carbon fiber self-sensing high ductility cementitious composite. J Build Eng. 2021;43:103125. doi: 10.1016/j.jobe.2021.103125
  • Gunasekara C, Law DW, Setunge S. Long term permeation properties of different fly ash geopolymer concretes. Constr Build Mater. 2016;124:352–362. doi: 10.1016/j.conbuildmat.2016.07.121
  • Al-Dahawi A, Öztürk O, Emami F, et al. Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials. Constr Build Mater. 2016;104:160–168. doi: 10.1016/j.conbuildmat.2015.12.072
  • Han B, Zhang L, Sun S, et al. Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos Part A ApplSci Manuf. 2015;79:103–115. doi: 10.1016/j.compositesa.2015.09.016
  • Dong W, Li W, Shen L, et al. Piezoresistive behaviours of carbon black cement-based sensors with layer-distributed conductive rubber fibres. Mater Des. 2019;182:108012. doi: 10.1016/j.matdes.2019.108012
  • Sun S, Ding S, Han B, et al. Multi-layer graphene-engineered cementitious composites with multifunctionality/intelligence. Compos Part B Eng. 2017;129:221–232. doi: 10.1016/j.compositesb.2017.07.063
  • Kubozono Y, Goto H, Jabuchi T, et al. Superconductivity in aromatic hydrocarbons. Phys C Supercond Its Appl. 2015;514:199–205. doi: 10.1016/j.physc.2015.02.015
  • Lee SJ, You I, Kim S, et al. Self-sensing capacity of ultra-high-performance fiber-reinforced concrete containing conductive powders in tension. Cem Concr Compos. 2022;125:104331. doi: 10.1016/j.cemconcomp.2021.104331
  • Si T, Xie S, Ji Z, et al. Synergistic effects of carbon black and steel fibers on electromagnetic wave shielding and mechanical properties of graphite/cement composites. J Build Eng. 2022;45:103561. doi: 10.1016/j.jobe.2021.103561
  • Xiao Q, Cai Y, Long G, et al. Effect of alternating current curing on properties of carbon black-cement conductive composite: setting, hydration and microstructure. J Build Eng. 2023;72:106603. doi: 10.1016/j.jobe.2023.106603
  • Mohsen MO, Al-Diseet MM, Aburumman MO, et al. Hybrid effect of GNPs, GOs, and CNTs on the flexural and compressive strengths of cement paste. J Build Eng. 2023;73:106679. doi: 10.1016/j.jobe.2023.106679