2,932
Views
38
CrossRef citations to date
0
Altmetric
Article

Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2176-2209 | Received 14 Jul 2020, Accepted 06 Oct 2020, Published online: 26 Oct 2020

References

  • Allen SK, Rastner P, Arora M, Huggel C, Stoffel M. 2016. Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition. Landslides. 13(6):1479–1491.
  • Akgun A. 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Izmir, Turkey. Landslides. 9(1):93–106.
  • Ambrosi C, Strozzi T, Scapozza C, Wegmuller U. 2018. Landslide hazard assessment in the Himalayas (Nepal and Bhutan) based on earth-observation data. Engg Geol. 237 (2018):217–228.
  • Ayhan MB. 2013. A fuzzy AHP approach for supplier selection problem: A case study in a gearmotor company. IJMVSC. 4(3):11–23.
  • Basharat M, Shah HR, Hameed N. 2016. Landslide susceptibility mapping using GIS and weighted overlay method: a case study from NW Himalayas, Pakistan. Arab J Geosci. 9(4):292.
  • Bera S, Guru B, V R. 2019. Evaluation of landslide susceptibility model: A comparative study on the part of Western Ghat Region, India. Remote Sens Appl: Soc Environ. 13:39–52..
  • Bozbura FT, Beskese A, Kahraman C. 2007. Prioritization of human capital measurement indicators using fuzzy AHP. Expert Syst Appl. 32(4):1100–1112.
  • Buckley JJ. 1985. Ranking alternatives using fuzzy numbers. Fuzzy Sets Syst. 15(1):21–31.
  • Catani F, Lagomarsino D, Segoni S, Tofani V. 2013. Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Nat Hazards Earth Syst Sci. 13(11):2815–2831.
  • Chen VYC, Hui-Pang L, Liu C, Liou JJH, Tzeng G, Yang L. 2011. Fuzzy MCDM approach for selecting the best environment-watershed plan. Appl Soft Comput. 11(1):265–275.
  • Chen W, Chai H, Sun X, Wang Q, Ding X, Hong H. 2016. A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arab J Geosci. 9(3):1–16.
  • Chen W, Pourghasemi HR, Panahi M, Kornejady A, Wang J, Xie X, Cao S. 2017. Spatal prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology. 297:69–85.
  • Chang DY. 1996. Application of the extent analysis method on fuzzy AHP. Euro J Op Res. 95(3):649–655.
  • Choubey VD, Litoria PK. 1990. Terrain classification and land hazard mapping in Kalsi-Chakrata area (Garhwal Himalaya), India. Int J Appl Earth Obs Geoinformation. 1:58–66.
  • Das I, Stein A, Kerle N, Dadhwal VK. 2011. Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India. Springer. 8(3):293–308.
  • Deng X, Li L, Tan Y. 2017. Validation of spatial prediction models for landslide susceptibility mapping by considering structural similarity. IJGI. 6(4):103.
  • Duru O, Bulut E, Yoshida S. 2012. Regime switching fuzzy AHP model for choice-varying priorities problem and expert consistency prioritization: A cubic fuzzy-priority matrix design. Expert Syst Appl. 39(5):4954–4964.
  • Feizizadeh B, Blaschke T, Nazmfar H, Rezaei Moghaddam MH. 2013. Landslide susceptibility mapping for the Urmia Lake basin, Iran: A multi-criteria evaluation approach using GIS. Int J Environ Res. 7(2):319–336.
  • Gabet EJ, Burbank DW, Putkonen J, Pratt-Sitaula B, Ojha T. 2004. Rainfall thresholds for landsliding in the Himalaya of Nepal. Geomorphology. 63(3–4):131–143.
  • Glade T. 2001. Landslide hazard assessment and historical landslide data—An inseparable couple? In: The use of historical data in natural hazard assessments. Dordrecht: Springer.
  • Gorsevski PV, and, Jankowski P. 2010. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter. Comput Geosci. 36(8):1005–1020.
  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-study, Central Italy. Geophys J R Astr Soc. 31(1–4):181–216.
  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T. 2012. Landslideinventory maps: New tools for an old problem. Earth-Sci Rev. 112(1–2):42–66.
  • Hanine M, Boutkhoum O, Tikniouine A, Agouti T. 2016. Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection. SpringerPlus. 5:501.
  • Khanduri S. 2017. Landslide hazard around Mussoorie: The Lesser Himalayan tourist destination of Uttarakhand, India. J Geogr Nat Disast. 07(02):1–10. 1000200
  • Kwan JSH, Chan SL, Cheuk JCY, Koo RCH. 2014. A case study on an open hillside landslide impacting on a flexible rock fall barrier at Jordan Valley, Hong Kong. Landslides. 11(6):1037–1050.
  • Laarhoven PV, Pedrycz W. 1983. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11(1–3):229–227.
  • Lee S, Pradhan B. 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides. 4(1):33–41.
  • Li L, Shi Z, Yin W, Zhu D, Ng SL, Cai C, Lei A. 2009. A fuzzy analytic hierarchy process (FAHP)approach to eco-environmental vulnerability assessment for the Danjiangkou Reservoir area, China. Ecol Modeling. 220(23):3439–3447.
  • Li Y, Zhou R, Zhao G, Li H, Su D, Ding H, Yan Z, Yan L, Yun K, Ma C. 2014. Tectonic uplift and landslides triggered by the Wenchuan earthquake and constraints on orogenic growth: a case study from Hongchun Gully, Longmen Mountains, Sichuan, China. Quat Int. 349:142–152.
  • Mallick J. 2016. Geospatial-based soil variability and hydrological zones of Abha semi-arid mountainous watershed, Saudi Arabia. Arab J Geosci. 9(4):281..
  • Mallick J, Singh RK, AlAwadh MA, Islam S, Khan RA, Qureshi MN. 2018. GIS-based landslide susceptibility evaluation using fuzzy-AHP mlti-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Env Earth Sci. 77:276.
  • Marinos V, Stoumpos G, Papazachos C. 2019. Landslide hazard and risk assessment for a natural gas pipeline project: The case of the Trans Adriatic Pipeline, Albania Section. Geosciences. 9(2):61.
  • Meena SR, Ghorbanzadeh O, Blaschke T. 2019. A comparative study of statistics-based landslide susceptibility models: A case study of the region affected by the Gorkha Earthquake in Nepal. IJGI. 8(2):94..
  • Mijani N, Samani NN. 2017. Comparison of fuzzy-based models in landslide hazard mapping. Int Arch Photogramm Remote Sens Spatial Inf Sci. 42:407–416.
  • Mohammady M, Pourghasemi HR, Pradhan B. 2012. Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of evidence models. J Asian Earth Sci. 61:221–236.
  • Moore ID, O'Loughlin EM, Burch GJ. 1988. A contour-based topographic model for hydrological and ecological applications. Earth Surf Process Landf. 13(4):305–320.
  • Nachappa TG, Kienberger S, Meena SR, Hölbling D, Blaschke T. 2020. Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping. Geomatics Nat Hazards Risk. 11 (1):572–600.
  • Noorollahi Y, Sadeghi S, Yousefi H, Nohegar A. 2018. Landslide modeling and susceptibility mapping using AHP and fuzzy approaches. Int J Hydro. 2(2):137–148.
  • Ouma Y, and, Tateishi R. 2014. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodologi-cal overview and case study assessment. Water. 6(6):1515–1545.
  • Pachauri AK. 2010. Landslide hazard mapping and assessment in Himalayas. Fifth Int Conf on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics; May 24–29; San Diego, California, USA. http:scholarsmine.mst.edu/icrageesd/05Sicrageesd/session04b/22.
  • Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Env Model Software. 25(6):747–759.
  • Pellicani R, Van Westen CJ, Spilotro G. 2014. Assessing landslide exposure in areas with limited landslide information. Landslides. 11(3):463–480.
  • Qianqian B, Yumin C, Susa D, Qianjiao W, Jiaxin Y, Jingyi Z. 2017. An improved information value model based on gray clustering for landslide susceptibility mapping. IJGI. 6(1):18. doi;10.3390
  • Rai PK, Mohan K, Kumra VK. 2014. Landslide hazard and its mapping using remote sensing & GIS techniques. J Sci Res. 58:1–13.
  • Raja NB, Çiçek I, Türkoğlu N, Aydin O, Kawasaki A. 2018. Correction to: landslide susceptibility mapping of the sera river Basin using logistic regression model. Nat Hazards. 91(3):1423–1423.
  • Saaty TL. 1990. How to make a decision: the analytic hierarchy process. Eur J Oper Res. 48(1):9–26.
  • Shahabi H, Khezri H, Ahmad BB, Allahvirdiasl H. 2012. Application of Satellite images and fuzzy set theory in landslide hazard mapping in Central Zab basin. IOSRJAP. 1(4):17–24.
  • Sharma A, Sur U, Singh P, Rai PK, Srivastava PK. 2020. Probabilistic landslide hazard assessment using Statistical Information Value (SIV) and GIS techniques: A case study of Himachal Pradesh, India. In: Wiley on technique for disaster risk management and mitigation. Hoboken (NJ): Wiley; p. 173–208.
  • Siebert J, Pavlacka O, Talasová J. 2016. A fuzzy extension of analytic hierarchy process based on the constrained fuzzy arithmetic. Fuzzy Optim Decis Making. 16(1):89–110.
  • Singh P, Sharma A, Sur U, Rai PK. 2020. Comparative landslide susceptibility assessment using statistical information value and index of entropy model in Bhanupali-Beri region, Himachal Pradesh, India. Environ Dev Sustainability. https://doi.org/10.1007/s10668-020-00811-0
  • Singh P, Sharma A. 2015. Probabilistic landslide susceptibility mapping using binary logistic regression model and geospatial techniques: A case study of Uttarakhand. 16th ESRI User Conf; December 2015; New Delhi, India.
  • Sur U, Singh P. 2019. Landslide susceptibility indexing using geospatial and geostatistical techniques along Chakrata-Kalsi road corridor, India. Indian Cartographer. J Indian National Cartographic Assoc (INCA). 38:2018.
  • Taalab K, Cheng T, Zhang Y. 2018. Mapping landslide susceptibility and types using random forest. Big Earth Data. 2(2):159–178. doi:10.1080/20964471.2018.1472392
  • Tien Bui D, Pradhan B, Lofman O, Dick O. 2012. Landslide susceptibility assessment in the Hoa Binh Province of Vietnam: a comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geophys J R Astr Soc. 171–172:12–29.
  • Tien Bui D, Pradhan B, Revhaug I, Nguyen DB, Pham HV, Bui QN. 2015. A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomatics Nat Haz Risk. 6(3):243–271.
  • Thai Pham B, Tien Bui D, Prakash I, Dholakia MB. 2017. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena. 149:52–63.
  • Thai Pham B, Prakash I, Khosravi K, Chapi K, Trinh PT, Ngo TQ, Hosseini SV, Bui DT. 2019. A comparison of support vector machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto Int. 34(13):1385–1407.
  • Thai Pham B, Tien Bui D, Prakash I. 2018. Landslide susceptibility modelling using different advanced decision trees methods. Civil Eng Environ Syst. 35(1–4):139–157.
  • Tsangaratos P, Ilia I. 2016. Comparison of a logistic regression and Naïve Bayes classifier inlandslide susceptibility assessments: The influence of models complexity and training datasetsize. Catena. 145:164–179.
  • Varnes DJ. 1984. Landslide hazard zonation: a review of principles and practice. Paris, France: UNESCO Press; p. 61.
  • Wang Q, Guo Y, Li W, He J, Wu Z. 2019. Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor. Geomatics Nat Haz Risk. 10(1):820–835.
  • Wang Y, Fang Z, Wang M, Ling P, Hong H. 2020. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput Geosci. 138:104445.
  • Wu Y, Li W, Wang Q, Liu Q, Yang D, Xing M, Pei Y, Yan S. 2016. Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arab J Geosci. 9(2):84.
  • Xu C, Xu X, Shen L, Yao Q, Tan X, Kang W, Ma S, Wu X, Cai J, Gao M, et al. 2016. Optimized volume models of earthquake-triggered landslides. Sci Rep. 6:1–9.
  • Zadeh LA. 1965. ‘Fuzzy sets’, information and control. 8: 338-53.
  • Zimmermann H-J. 1992. Fuzzy set theory. Vol. 2. Hoboken (NJ): Wiley.
  • Zhang J, He P, Xiao J, Xu F. 2018. Risk assessment model of expansive soil slope based on Fuzzy-AHP method and its engineering application. Geomatics Nat Haz Risks. 9(1):389–402.