1,586
Views
4
CrossRef citations to date
0
Altmetric
Articles

Temporal detection of sharp landslide deformation with ensemble-based LSTM-RNNs and Hurst exponent

, , , , &
Pages 3089-3113 | Received 06 Jul 2021, Accepted 12 Oct 2021, Published online: 02 Nov 2021

References

  • Box GEP, Cox DR. 1964. An analysis of transformations. J R Stat Soc: Ser B. 26(2):211–252.
  • Chousianitis K, Del Gaudio V, Kalogeras I, Ganas A. 2014. Predictive model of Arias intensity and Newmark displacement for regional scale evaluation of earthquake-induced landslide hazard in Greece. Soil Dyn Earthquake Eng. 65:11–29.
  • Couillard M, Davison M. 2005. A comment on measuring the Hurst exponent of financial time series. Physica A. 348:404–418.
  • Dietrich WE, Reiss R, Hsu ML, Montgomery DR. 1995. A process‐based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrol Process. 9(3-4):383–400.
  • Efstratiadis A, Nalbantis I, Koutsoyiannis D. 2015. Hydrological modelling of temporally-varying catchments: facets of change and the value of information. Hydrol Sci J. 60(7-8):1438–1461.
  • Evans DL, Drew JH, Leemis L. 2008. M., The distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling test statistics for exponential populations with estimated parameters. Commun Stat-Simulat Comput. 37(7):1396–1421.
  • Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, Böhm A, Deubner J, Jäckel Z, Seiwald K, et al. 2019. A., U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods. 16(1):67–70.
  • Gao G, Meguid MA. 2018. On the role of sphericity of falling rock clusters—insights from experimental and numerical investigations. Landslides. 15(2):219–232.
  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena S, Tiede D, Aryal J. 2019. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 11(2):196..
  • Greenspan H, Van Ginneken B, Summers RM. 2016. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 35(5):1153–1159.
  • Gudiyangada Nachappa T, Kienberger S, Meena SR, Hölbling D, Blaschke T. 2020. Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping. Geomat Nat Hazards Risk. 11(1):572–600.
  • Gunn SR. 1998. Support vector machines for classification and regression. ISIS Technic Rep. 14:5–16. http://see.xidian.edu.cn/faculty/chzheng/bishe/indexfiles/new_folder/svm.pdf.
  • He Y, Fei F, Wang W. 2018. Predicting manufactured shapes of a projection micro-stereolithography process via convolutional encoder-decoder networks. Paper presented at: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers: V01BT02A033-V01BT02A033.
  • Huang GB, Zhu QY, Siew CK. 2006. Extreme learning machine: theory and applications. Neurocomputing. 70(1–3):489–501.
  • Hurst HE. 1956. Methods of using long-term storage in reservoirs. Proc Inst Civ Eng. 5(5):519–543.
  • Hurst HE. 1957. A suggested statistical model of some time series which occur in nature. Nature. 180(4584):494–494.
  • Irie K, Lei Z, Schlüter R, Ney H. 2018. Prediction of LSTM-RNN full context states as a subtask for N-gram feedforward language models. Paper presented at 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. p. 6104–6108.
  • Jiang Y, Xu Q, Lu Z, Luo H, Liao L, Dong X. 2021. Modelling and predicting landslide displacements and uncertainties by multiple machine-learning algorithms: application to Baishuihe landslide in Three Gorges Reservoir, China, Geomatics. Nat Hazards Risk. 12(1):741–762.
  • Jibson RW. 2007. Regression models for estimating coseismic landslide displacement. Eng Geol. 91(2–4):209–218.
  • Lee T. 2016. Wild bootstrap Ljung–Box test for cross correlations of multivariate time series. Econ Lett. 147:59–62.
  • Legendre P, Borcard D. 2018. Box–Cox‐chord transformations for community composition data prior to beta diversity analysis. Ecography. 41(11):1820–1824.
  • Lewis R, Reinsel GC. 1985. Prediction of multivariate time series by autoregressive model fitting. J Multivariate Anal. 16(3):393–411.
  • Li H, Xu Q, He Y, Deng J. 2018. Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models. Landslides. 15(10):2047–2059.
  • Li H, Xu Q, He Y, Fan X, Li S. 2020b. Modeling and predicting reservoir landslide displacement with deep belief network and EWMA control charts: a case study in Three Gorges Reservoir. Landslides. 17(3):693–707.
  • Li SH, Wu LZ, Chen JJ, Huang RQ. 2020a. Multiple data-driven approach for predicting landslide deformation. Landslides. 17(3):709–718.
  • Lian C, Philip Chen CL, Zeng Z, Yao W, Tang H. 2016. Prediction intervals for landslide displacement based on switched neural networks. IEEE Trans Rel. 65(3):1483–1495. https://doi.org/http://dx.doi.org/10.1109/TR.2016.2570540.
  • Lian C, Zhu L, Zeng Z, Su Y, Yao W, Tang H. 2018. Constructing prediction intervals for landslide displacement using bootstrapping random vector functional link networks selective ensemble with neural networks switched. Neurocomputing. 291:1–10.
  • Lu P, Rosenbaum MS. 2003. Artificial neural networks and grey systems for the prediction of slope stability. Nat Hazards. 30(3):383–398.
  • Ma L, Sun B, Li Z. 2017. Bagging likelihood-based belief decision trees. Paper presented at 2017 20th International Conference on Information Fusion (Fusion). IEEE. p. 1–6.
  • Massey CI, Petley DN, McSaveney MJ. 2013. Patterns of movement in reactivated landslides. Eng Geol. 159:1–19.
  • Meena S, Ghorbanzadeh O, Blaschke T. 2019. A comparative study of statistics-based landslide susceptibility models: a case study of the region affected by the Gorkha earthquake in Nepal. IJGI. 8(2):94..
  • Meena SR, Ghorbanzadeh O, van Westen CJ, Nachappa TG, Blaschke T, Singh RP, Sarkar R. 2021. Rapid mapping of landslides in the Western Ghats (India) triggered by 2018 extreme monsoon rainfall using a deep learning approach. Landslides. 18(5):1937–1950.
  • Meng Q, Wang H, He M, Gu J, Qi J, Yang L. 2020. Displacement prediction of water-induced landslides using a recurrent deep learning model. Eur J Environ Civil Eng. 1–15.
  • Moghaddam AH, Moghaddam MH, Esfandyari M. 2016. Stock market index prediction using artificial neural network. J Econ, Fin Administrat Sci. 21(41):89–93.
  • Mohammadi M, Al-Fuqaha A, Sorour S, Guizani M. 2018. Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun Surv Tutorials. 20(4):2923–2960.
  • Montgomery DR, Dietrich WE. 1994. A physically based model for the topographic control on shallow landsliding. Water Resour Res. 30(4):1153–1171.
  • Ouyang T, He Y, Li H, Sun Z, Baek S. 2019. Modeling and forecasting short-term power load with copula model and deep belief network. IEEE Trans Emerg Top Comput Intell. 3(2):127–136.
  • Pradhan B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci. 51:350–365.
  • Razali NM, Wah YB. 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and Anderson-Darling tests. J Stat Model Anal. 2:21–33.
  • Saito M. 1965. Forecasting the time of occurrence of a slope failure. Paper presented at the Proceedings of the 6th international conference on soil mechanics and foundation engineering, Montre al, Que. Pergamon Press, Oxford. p. 537–541. https://ci.nii.ac.jp/naid/10003436025/.
  • Shihabudheen KV, Pillai GN, Peethambaran B. 2017. Prediction of landslide displacement with controlling factors using extreme learning adaptive neuro-fuzzy inference system (ELANFIS). Appl Soft Comput. 61:892–904.
  • Sutskever I, Vinyals O, Le QV. 2014. Sequence to sequence learning with neural networks. Adv Neural Inform Process Syst. 3104–3112. http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.
  • Tao ZG, Zhu C, He MC, Karakus M. 2021. A physical modeling-based study on the control mechanisms of Negative Poisson's ratio anchor cable on the stratified toppling deformation of anti-inclined slopes. Int J Rock Mech Min Sci. 138:104632..
  • Tao ZG, Zhu C, He MC, Liu KM. 2020. Research on the safe mining depth of anti-dip bedding slope in Changshanhao Mine. Geomech Geophys Geo-Energy Geo-Resour. 36(6):1–20.
  • Tashman LJ. 2000. Out-of-sample tests of forecasting accuracy: an analysis and review. Int J Forecast. 16(4):437–450.
  • Tavakkoli S, Shahabi H, Jarihani B, Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena S, Aryal J. 2019. Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas. Remote Sens. 11(21):2575..
  • Tiwari AK, Albulescu CT, Yoon SM. 2017. A multifractal detrended fluctuation analysis of financial market efficiency: comparison using Dow Jones sector ETF indices. Physica A. 483:182–192.
  • Turaga P, Chellappa R, Subrahmanian VS, Udrea O. 2008. Machine recognition of human activities: a survey. IEEE Trans Circuits Syst Video Technol. 18(11):1473–1488.
  • Voight B. 1989. A relation to describe rate-dependent material failure. Science. 243(4888):200–203. https://science.sciencemag.org/content/243/4888/200.
  • Wang Y, Tang H, Wen T, Ma J. 2019. A hybrid intelligent approach for constructing landslide displacement prediction intervals. Appl Soft Comput. 81:105506–105516.
  • Xu Q, Li H, He Y, Liu F, Peng D. 2019. Comparison of data-driven models of loess landslide runout distance estimation. Bull Eng Geol Environ. 78(2):1281–1294.
  • Xu W, Meng Q, Wang R, Zhang J. 2016. A study on the fractal characteristics of displacement time-series during the evolution of landslides. Geomat Nat Hazards & Risk. 7(5):1631–1644.
  • Yang B, Yin K, Lacasse S, Liu Z. 2019. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides. 16(4):677–694.
  • Yildirim O, Baloglu UB, Tan RS, Ciaccio EJ, Acharya UR. 2019. A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput Methods Programs Biomed. 176:121–133.
  • Zhu C, He MC, Karakus M, Cui XB, Tao ZG. 2020. Investigating toppling failure mechanism of anti-dip layered slope due to excavation by physical modelling. Rock Mech Rock Eng. 53(11):5029–5050.
  • Zhu C, He MC, Karakus M, Zhang XH, Tao ZG. 2021. Numerical simulations of the failure process of anaclinal slope physical model and control mechanism of negative Poisson's ratio cable. Bull Eng Geol Environ. 80(4):3365–3380.
  • Zou H, Hastie T. 2005. Regularization and variable selection via the elastic net. J Royal Stat Soc B. 67(2):301–320.