1,609
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effect of spatial resolution and data splitting on landslide susceptibility mapping using different machine learning algorithms

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 3381-3408 | Received 17 May 2021, Accepted 23 Nov 2021, Published online: 21 Dec 2021

References

  • Abraham MT, Pothuraju D, Satyam N. 2019. Rainfall thresholds for prediction of landslides in Idukki, India: an empirical approach. Water. 11(10):2113.
  • Abraham MT, Satyam N, Reddy SKP, Pradhan B. 2021. Runout modeling and calibration of friction parameters of Kurichermala debris flow, India. Landslides. 18(2):737–754.
  • Abraham MT, Satyam N, Rosi A, Pradhan B, Segoni S. 2021. Usage of antecedent soil moisture for improving the performance of rainfall thresholds for landslide early warning. Catena. 200(January):105147.
  • Abraham MT, Satyam N, Shreyas N, Pradhan B, Segoni S, Abdul Maulud KN, Alamri AM. 2021. Forecasting landslides using SIGMA model: a case study from Idukki, India. Geomat Nat Hazards Risk. 12(1):540–559.
  • Akgun A. 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides. 9(1):93–106.
  • Akgun A, Türk N. 2010. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environ Earth Sci. 61(3):595–611.
  • ASF DAAC. 2015. Alaska Satellite Facility Distributed Active Archive Center (ASF DAAC) Dataset: ASF DAAC 2015, ALOS PALSAR_Radiometric_Terrain_Corrected_high_res; Includes Material © JAXA/METI 2007.
  • Bai SB, Wang J, Zhang FY, Pozdnoukhov A, Kanevski M. 2008. Prediction of landslide susceptibility using logistic regression: a case study in Bailongjiang River Basin, China. Proc – 5th Int Conf Fuzzy Syst Knowl Discov FSKD. 4:647–651.
  • Breiman L, Last M, Rice J. 2006. Random Forests: finding Quasars. In: Stat challenges astron. New York: Springer; p. 243–254.
  • Bröcker J, Smith LA. 2007. Increasing the reliability of reliability diagrams. Weather Forecast. 22(3):651–661. https://journals.ametsoc.org/doi/https://doi.org/10.1175/WAF993.1.
  • Bui DT, Ho T-C, Pradhan B, Pham B-T, Nhu V-H, Revhaug I. 2016. GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environ Earth Sci. 75(14):1101. http://link.springer.com/https://doi.org/10.1007/s12665-016-5919-4.
  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB. 2012. Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology. 171–172:12–29. https://linkinghub.elsevier.com/retrieve/pii/S0169555X12002061.
  • Capitani M, Ribolini A, Bini M. 2013. The slope aspect: a predisposing factor for landsliding? Comptes Rendus – Geosci. 345(11–12):427–438. https://doi.org/http://dx.doi.org/10.1016/j.crte.2013.11.002.
  • Catani F, Lagomarsino D, Segoni S, Tofani V. 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci. 13(11):2815–2831.
  • Chen Y, Chen W, Janizadeh S, Bhunia GS, Bera A, Pham QB, Linh NTT, Balogun A-L, Wang X. 2021. Deep learning and boosting framework for piping erosion susceptibility modeling: spatial evaluation of agricultural areas in the semi-arid region. Geocarto Int. 1–27. https://www.tandfonline.com/doi/full/https://doi.org/10.1080/10106049.2021.1892212.
  • Chen Z, Ye F, Fu W, Ke Y, Hong H. 2020. The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River basin, NW China. Nat Hazards. 101(3):853–877.
  • Cortes C, Vapnik V. 1995. Suppport vector networks. Mach Learn. 20(3):273–297.
  • Cristianini N, Schölkopf B. 2002. Support vector machines and kernel methods: the new generation of learning machines. AI Mag. 23(3):31–41.
  • Department of Mining and Geology Kerala. 2016. District Survey Report of Minor Minerals. Thiruvananthapuram.
  • Dikshit A, Satyam DN. 2018. Estimation of rainfall thresholds for landslide occurrences in Kalimpong, India. Innov Infrastruct Solut. 3(1). Article number: 24. doi: https://doi.org/10.1007/s41062-018-0132-9
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen CW, Han Z, Pham BT. 2020. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides. 17(3):641–658.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen CW, Khosravi K, Yang Y, Pham BT. 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Tot Environ. 662:332–346.
  • Dou J, Yunus AP, Merghadi A, Shirzadi A, Nguyen H, Hussain Y, Avtar R, Chen Y, Pham BT, Yamagishi H. 2020. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci Tot Environ. 720(February):137320.
  • Dou J, Yunus AP, Tien Bui D, Sahana M, Chen C-W, Zhu Z, Wang W, Pham BT. 2019. Evaluating GIS-based multiple statistical models and data mining for earthquake and rainfall-induced landslide susceptibility using the LiDAR DEM. Remote Sens. 11(6):638.
  • Formetta G, Capparelli G, Versace P. 2016. Evaluating performance of simplified physically based models for shallow landslide susceptibility. Hydrol Earth Syst Sci. 20(11):4585–4603.
  • Froude MJ, Petley DN. 2018. Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci. 18(8):2161–2181. https://nhess.copernicus.org/articles/18/2161/2018/.
  • Geological Survey of India. 2010. Geology and minerals: District Resource Map, Idukki. [place unknown].
  • Gilewski P. 2021. Impact of the grid resolution and deterministic interpolation of precipitation on rainfall–runoff modeling in a sparsely gauged mountainous catchment. Water. 13(2):230. https://www.mdpi.com/2073-4441/13/2/230.
  • Hao L, van Westen C, Martha TR, Jaiswal P, McAdoo BG, Rajaneesh A. 2020. Constructing a complete landslide inventory dataset for the 2018 monsoon disaster in Kerala, India, for land use change analysis. Earth Syst Sci Data. 12(4):2899–2918. https://essd.copernicus.org/articles/12/2899/2020/.
  • Jaya IGNM, Ruchjana BN, Abdullah AS, Andriyana Y. 2021. Comparison of IDW and GP models with application to spatiotemporal interpolation of rainfall in Bali Province, Indonesia. J Phys Conf Ser. 1722(1). Article number is : 012080
  • Jones S, Kasthurba AK, Bhagyanathan A, Binoy BV. 2021. Landslide susceptibility investigation for Idukki district of Kerala using regression analysis and machine learning. Arab J Geosci. 14(10):838. https://link.springer.com/https://doi.org/10.1007/s12517-021-07156-6.
  • Kanungo DP, Singh R, Dash RK. 2020. Field observations and lessons learnt from the 2018 landslide disasters in Idukki District, Kerala. Curr Sci. 119(11):1797–1806.
  • Lary DJ, Alavi AH, Gandomi AH, Walker AL. 2016. Machine learning in geosciences and remote sensing. Geosci Front. 7(1):3–10. https://doi.org/http://dx.doi.org/10.1016/j.gsf.2015.07.003.
  • Li Y, Chen W, Rezaie F, Rahmati O, Davoudi Moghaddam D, Tiefenbacher J, Panahi M, Lee M-J, Kulakowski D, Tien Bui D, et al. 2021. Debris flows modeling using geo-environmental factors: developing hybridized deep-learning algorithms. Geocarto Int. 1–25. https://www.tandfonline.com/doi/full/https://doi.org/10.1080/10106049.2021.1912194.
  • Lima P, Steger S, Glade T. 2021. Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria. Landslides (December 2020). 18(11):3531–3546. https://link.springer.com/https://doi.org/10.1007/s10346-021-01693-7.
  • Luti T, Segoni S, Catani F, Munafò M, Casagli N. 2020. Integration of remotely sensed soil sealing data in landslide susceptibility mapping. Remote Sens. 12(9):1486. https://www.mdpi.com/2072-4292/12/9/1486.
  • Marjanovic M, Bajat B, Kovacevic M. 2009. Landslide susceptibility assessment with machine learning algorithms. In: 2009 Int Conf Intell Netw Collab Syst. Barcelona Spain: IEEE; p. 273–278. http://ieeexplore.ieee.org/document/5368960/.
  • McCullagh P, Nelder JA. 1989. Generalized linear models. 2nd ed. London, New York: Chapman and Hall.
  • Meena SR, Ghorbanzadeh O, van Westen CJ, Nachappa TG, Blaschke T, Singh RP, Sarkar R. 2021. Rapid mapping of landslides in the Western Ghats (India) triggered by 2018 extreme monsoon rainfall using a deep learning approach. Landslides. 18(5):1937–1950. http://link.springer.com/https://doi.org/10.1007/s10346-020-01602-4.
  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B. 2020. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev. 207(June):103225.
  • Miner A, Vamplew P, Windle DJ, Flentje P, Warner P. 2010. A comparative study of various data mining techniques as applied to the modeling of landslide susceptibility on the Bellarine Peninsula, Victoria, Australia. In: 11th IAEG Congr Int Assoc Eng Geol Environ. Auckland, New Zealand; p. 1327–1336.
  • National Remote Sensing Centre 2015. Cartosat DEM. Natl Remote Sens Centre, Dep Space, Gov India.
  • Palamakumbure D, Flentje P, Stirling D. 2015. Consideration of optimal pixel resolution in deriving landslide susceptibility zoning within the Sydney Basin, New South Wales, Australia. Comput Geosci. 82:13–22. https://doi.org/http://dx.doi.org/10.1016/j.cageo.2015.05.002.
  • Pham BT, Nguyen-Thoi T, Qi C, Phong T, Van Dou J, Ho LS, Le H, Van, Prakash I. 2020. Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena. 195(June):104805.
  • Pham BT, Pradhan B, Tien Bui D, Prakash I, Dholakia MB. 2016. A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw. 84:240–250. https://doi.org/http://dx.doi.org/10.1016/j.envsoft.2016.07.005.
  • Pham BT, Prakash I, Dou J, Singh SK, Trinh PT, Tran HT, Le TM, Van Phong T, Khoi DK, Shirzadi A, et al. 2020. A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto Int. 35(12):1267–1292.
  • Piciullo L, Calvello M, Cepeda JM. 2018. Territorial early warning systems for rainfall-induced landslides. Earth Sci Rev. 179(April 2017):228–247.
  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR. 2013. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci. 6(7):2351–2365. http://link.springer.com/https://doi.org/10.1007/s12517-012-0532-7.
  • Pradhan B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci. 51:350–365. https://doi.org/http://dx.doi.org/10.1016/j.cageo.2012.08.023.
  • Pradhan B, Sameen MI. 2017. Effects of the spatial resolution of digital elevation models and their products on landslide susceptibility mapping. In: Pradhan B, editor. Laser scanning appl landslide assess. 1st ed. Cham: Springer International Publishing; p. 133–150. http://link.springer.com/https://doi.org/10.1007/978-3-319-55342-9.
  • Qiu J, Wu Q, Ding G, Xu Y, Feng S. 2016. A survey of machine learning for big data processing. EURASIP J Adv Signal Process. 67 (2016). https://doi.org/https://doi.org/10.1186/s13634-016-0355-x
  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth-Sci Rev. 180:60–91. https://linkinghub.elsevier.com/retrieve/pii/S0012825217305652.
  • Rodríguez JD, Pérez A, Lozano JA. 2010. Sensitivity analysis of kappa-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell. 32(3):569–575.
  • Singh SK, Taylor RW, Rahman MM, Pradhan B. 2018. Developing robust arsenic awareness prediction models using machine learning algorithms. J Environ Manage. 211:125–137.
  • Sorbino G, Sica C, Cascini L. 2010. Susceptibility analysis of shallow landslides source areas using physically based models. Nat Hazards. 53(2):313–332.
  • Sun D, Xu J, Wen H, Wang Y. 2020. An optimized random forest model and its generalization ability in landslide susceptibility mapping: application in two areas of three Gorges Reservoir, China. J Earth Sci. 31(6):1068–1086.
  • Vishnu CL, Sajinkumar KS, Oommen T, Coffman RA, Thrivikramji KP, Rani VR, Keerthy S. 2019. Satellite-based assessment of the August 2018 flood in parts of Kerala, India. Geomat Nat Hazards Risk. 10(1):758–767. https://www.tandfonline.com/doi/full/https://doi.org/10.1080/19475705.2018.1543212.
  • Wang W, He Z, Han Z, Li Y, Dou J, Huang J. 2020. Mapping the susceptibility to landslides based on the deep belief network: a case study in Sichuan Province, China. Nat Hazards. 103(3):3239–3261.
  • van Westen CJ, van Asch TWJ, Soeters R. 2006. Landslide hazard and risk zonation – why is it still so difficult? Bull Eng Geol Environ. 65(2):167–184.
  • Yalcin A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena. 72(1):1–12.
  • Youssef AM, Al-Kathery M, Pradhan B. 2015. Landslide susceptibility mapping at Al-Hasher area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosci J. 19(1):113–134. http://link.springer.com/https://doi.org/10.1007/s12303-014-0032-8.
  • Zare M, Pourghasemi HR, Vafakhah M, Pradhan B. 2013. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci. 6(8):2873–2888. http://link.springer.com/https://doi.org/10.1007/s12517-012-0610-x.
  • Zhou L, Pan S, Wang J, Vasilakos AV. 2017. Machine learning on big data: opportunities and challenges. Neurocomputing. 237(December 2016):350–361.