1,134
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of coal dust parameters on gas-coal dust explosions in pipe networks

, &
Pages 1229-1250 | Received 16 Feb 2022, Accepted 07 Apr 2022, Published online: 02 May 2022

References

  • Cao W, Qin Q, Cao W, Lan Y, Chen T, Xu S, Cao X. 2017. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel. Powder Technol. 310(01):17–23.
  • Cloney CT, Ripley RC, Pegg MJ, Khan F, Amyotte PR. 2018. Lower flammability limits of hybrid mixtures containing 10 micron coal dust particles and methane gas. Process Saf Environ Prot. 120:215–226.
  • Cloney CT, Ripley RC, Pegg MJ, Khan FI, Amyotte PR. 2019. Role of particle diameter in the lower flammability limits of hybrid mixtures containing coal dust and methane gas. J Loss Prev Process Ind. 61:206–212.
  • Gan B, Gao W, Zhang X, et al. 2019. Flame temperature characteristics of PMMA dust clouds with different particle sizes. Explos Shock Waves. 39(01):140–147.
  • Gieras M, Klemens R, Rarata G. 2015. Determination of explosion parameters of methane-air mixtures in the chamber of 40dm3, at normal and elevated temperature. J Loss Prev Process Ind. 15(03):263–270.
  • Guo C, Shao H, Jiang S, Wang Y, Wang K, Wu Z. 2020. Effect of low-concentration coal dust on gas explosion propagation law. Powder Technol. 367(01):243–252.
  • Jing G, Guo S, Wu Y, Wang Y. 2020. Study on the influence of coal dust concentration on flame propagation characteristics of gas explosion in semi-closed tube. Energy Sour Part A. 1–15.
  • Jing G, Guo S, Wu Y. 2021. Investigation on the characteristics of single-phase gas explosion and gas-coal dust coupling explosion in bifurcated tubes. Therm Sci. 25(5 Part A):3595–3605.
  • Jing G, Liu C, Duan X. 2019. Experimental study on coupled gas and coal dust explosion in semi-closed pipeline. J China Coal Soci. 44(S1):157–163.
  • Kundu SK, Zanganeh J, Eschebach D, Badat Y, Moghtaderi B. 2018. Confined explosion of methane-air mixtures under turbulence. Fuel. 220(01):471–480.
  • Kundu SK, Zanganeh J, Eschebach D, Mahinpey N, Moghtaderi B. 2017. Explosion characteristics of methane–air mixtures in a spherical vessel connected with a duct. Process Saf Environ Prot. 3(01):85–93.
  • Li D, Feng G, Guo Y, et al. 2016. Analysis on the strength increase law of filling material based on response surface method. J China Coal Soci. 41(02):392–398.
  • Li H, Deng J, Chen X, Shu C-M, Kuo C-H, Hu X. 2020. Influence of ignition delay on explosion severities of the methane–coal particle hybrid mixture at elevated injection pressures. Powder Technol. 367(01):860–876.
  • Lin S, Liu Z, Wang Z, Qian J, Gu Z. 2022. Flame characteristics in a coal dust explosion induced by a methane explosion in a horizontal pipeline. Combust Sci Technol. 194(3):622–635.
  • Mishra D, Azam S. 2018. Experimental investigation on effects of particle size, dust concentration and dust-dispersion-air pressure on minimum ignition temperature and combustion process of coal dust clouds in a G-G furnace. Fuel. 227(01):424–433.
  • Mohammed J, Jafar Z, Behdad M. 2017a. The flame deflagration of hybrid methane coal dusts in a large-scale detonation tube (LSDT). Fuel. 194(01):491–502.
  • Mohammed J, Jafar Z, Behdad M. 2017b. The influences of the initial ignition energy on methane explosion in a flame deflagration tube. Energy Fuels. 31(6):6422–6434.
  • Niu Y, Zhang L, Shi B, Yang Q, Zhong Z. 2021. Methane–coal dust mixed explosion in transversal pipe networks. Combust Sci Technol. 193(10):1734–1746.
  • Niu Y, Zhang L, Shi B. 2020. Experimental study on the explosion-propagation law of coal dust with different moisture contents induced by methane explosion. Powder Technol. 361:507–511.
  • Pinaev AV, Vasil’ev AA, Pinaev PA. 2015. Suppression of gas detonation by a dust cloud at reduced mixture pressures. Shock Waves. 25(3):267–275.
  • Qi Y, Gan X, Li Z, Li L, Wang Y, Ji W. 2021. Variation and prediction methods of the explosion characteristic parameters of coal dust/gas mixtures. Energies. 14(2):264–213.
  • Sanchirico R, Di Sarli V, Di Benedetto A. 2018. Volatile point of dust mixtures and hybrid mixtures. J Loss Prev Process Ind. 56:370–377. ():
  • Sanchirico R, Di Sarli V, Di Benedetto A. 2020. Effect of initial pressure on the lower explosion limit of nicotinic acid/acetone mixture. J Loss Prev Process Ind. 64:104075.
  • Sanchirico R, Russo P, Di Sarli V, Di Benedetto A. 2014. Explosibility and flammability characteristics of nicotinic acid-lycopodium/air mixtures. Chem Eng Trans. 36:265–270.
  • Sanchirico R, Russo P, Saliva A, Doussot A, Di Sarli V, Di Benedetto A. 2015. Explosion of lycopodium-nicotinic acid-methane complex hybrid mixtures. J Loss Prev Process Ind. 36:505–508.
  • Si R, Li R, Su D. 2018. Experimental study on the influence of coal dust cloud mass concentration on gas explosion pressure. J Saf Environ. 18(05):1796–1798.
  • Tan B, Liu H, Xu B, Wang T. 2020. Comparative study of the explosion pressure characteristics of micro- and nano-sized coal dust mixtures in a pipe. Int J Coal Sci Technol. 7:68–78.
  • Wang B, Gou R, Kan R. 2019. Influence of particle size of coal dust on gas and coal dust explosion. J North Univ China (Nat Sci Ed). 40(01):79–83+89.
  • Wang S, Shi Z, Peng X, Zhang Y, Cao W, Chen W, Li J. 2019. Effect of the ignition delay time on explosion severity parameters of coal dust/air mixtures. Powder Technol. 342:509–516.
  • Wang Z. 2017. Study on the influence of low concentration gas on the lower limit of coal dust explosion. Saf Coal Mines. 48(02):26–27+32.
  • Zhang L, Yang Q, Shi B, Niu Y, Zhong Z. 2021. Influences of a pipeline’s bending angle on the propagation law of coal dust explosion induced by gas explosion. Combust Sci Technol. 193(5):798–811.
  • Zhou Y, Gan B, Jiang H, Huang L, Gao W. 2022. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions. Explos Shock Waves. 42:1. http://kns.cnki.net/kcms/detail/51.1148.O3.20210721.1634.012.html.