2,501
Views
1
CrossRef citations to date
0
Altmetric
Article

Uni-temporal Sentinel-2 imagery for wildfire detection using deep learning semantic segmentation models

&
Article: 2196370 | Received 29 Sep 2022, Accepted 21 Feb 2023, Published online: 05 Apr 2023

References

  • Alencar AAC, Arruda VLS, Silva WVd, Conciani DE, Costa DP, Crusco N, Duverger SG, Ferreira NC, Franca-Rocha W, Hasenack H, et al. 2022. Long-term landsat-based monthly burned area dataset for the Brazilian biomes using deep learning. Remote Sens. 14(11):2510.
  • Balaniuk R, Isupova O, Reece S. 2020. Mining and tailings dam detection in satellite imagery using deep learning. Sensors. 20(23):6936.
  • Barboza Castillo E, Turpo Cayo EY, de Almeida CM, Salas López R, Rojas Briceño NB, Silva López JO, Barrena Gurbillón MÁ, Oliva M, Espinoza-Villar R. 2020. Monitoring wildfires in the Northeastern Peruvian amazon using landsat-8 and sentinel-2 imagery in the GEE platform. IJGI. 9(10):564.
  • Cardil A, Mola-Yudego B, Blázquez-Casado Á, González-Olabarria JR. 2019. Fire and burn severity assessment: calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with field data. J Environ Manage. 235:342–349.
  • Chaurasia A, Culurciello E, editors. 2017. Linknet: exploiting encoder representations for efficient semantic segmentation. 2017 IEEE Visual Communications and Image Processing (VCIP); Dec; Piscataway (NJ):IEEE. p. 1–4.
  • Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2014. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:14127062. https://arxiv.org/abs/1412.7062
  • Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2017. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell. 40(4):834–848.
  • Chen LC, Papandreou G, Schroff F, Adam H. 2017. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:170605587. https://arxiv.org/abs/1706.05587
  • Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. Proceedings of the European Conference on Computer Vision (ECCV). p. 801–818.
  • Chuvieco E, De Santis A, Riaño D, Halligan K. 2007. Simulation approaches for burn severity estimation using remotely sensed images. Fire Ecol. 3(1):129–150.
  • Chuvieco E, Mouillot F, van der Werf GR, San Miguel J, Tanase M, Koutsias N, García M, Yebra M, Padilla M, Gitas I, et al. 2019. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens Environ. 225:45–64.
  • Corbane C, Syrris V, Sabo F, Politis P, Melchiorri M, Pesaresi M, Soille P, Kemper T. 2021. Convolutional neural networks for global human settlements mapping from Sentinel-2 satellite imagery. Neural Comput Applic. 33(12):6697–6720.
  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, et al. 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sens Environ. 120:25–36.
  • Eke M, Cingiroglu F, Kaynak B. 2022. Impacts of summer 2021 wildfire events in Southwestern Turkey on air quality with multi-pollutant satellite retrievals. EGU General Assembly Conference Abstracts. p. EGU22–12134.
  • El Mendili L, Puissant A, Chougrad M, Sebari I. 2020. Towards a multi-temporal deep learning approach for mapping urban fabric using sentinel 2 images. Remote Sens. 12(3):423.
  • ElGharbawi T, Zarzoura F. 2021. Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon. ISPRS J Photogramm Remote Sens. 173:1–9.
  • Filipponi F. 2018. BAIS2: burned area index for sentinel-2. Proceedings. 2:364.
  • Florath J, Keller S. 2022. Supervised machine learning approaches on multispectral remote sensing data for a combined detection of fire and burned area. Remote Sens. 14(3):657.
  • Gascon F, Bouzinac C, Thépaut O, Jung M, Francesconi B, Louis J, Lonjou V, Lafrance B, Massera S, Gaudel-Vacaresse A, et al. 2017. Copernicus sentinel-2A calibration and products validation status. Remote Sens. 9(6):584.
  • Giannaros TM, Papavasileiou G, Lagouvardos K, Kotroni V, Dafis S, Karagiannidis A, Dragozi E. 2022. Meteorological analysis of the 2021 extreme wildfires in Greece: lessons learned and implications for early warning of the potential for pyroconvection. Atmosphere. 13(3):475.
  • Helber P, Bischke B, Dengel A, Borth D. 2019. Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE J Sel Top Appl Earth Observ Remote Sens. 12(7):2217–2226.
  • Hu X, Ban Y, Nascetti A. 2021. Uni-temporal multispectral imagery for burned area mapping with deep learning. Remote Sens. 13(8):1509.
  • Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. p. 4700–4708.
  • Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. International conference on machine learning; Proceedings of Machine Learning Research. p. 448–456.
  • Kalantar B, Ueda N, Saeidi V, Janizadeh S, Shabani F, Ahmadi K, Shabani F. 2021. Deep neural network utilizing remote sensing datasets for flood hazard susceptibility mapping in Brisbane, Australia. Remote Sens. 13(13):2638.
  • Key CH, Benson NC. 2006. Landscape assessment (LA). In: Lutes DC, Keane RE, Caratti JF, Key CH, Benson NC, Sutherland S, Gangi LJ, editros. FIREMON: fire effects monitoring and inventory system Gen Tech Rep RMRS-GTR-164-CD. Fort Collins (CO): US Department of Agriculture, Forest Service, Rocky Mountain Research Station; p. LA 155–164.
  • Kikaki K, Kakogeorgiou I, Mikeli P, Raitsos DE, Karantzalos K. 2022. MARIDA: a benchmark for Marine Debris detection from Sentinel-2 remote sensing data. PLoS One. 17(1):e0262247.
  • Kiliçaslan E. 2022. Wildfire resilient village of the future. https://repository.tudelft.nl/islandora/object/uuid:302583c2-1d88-476d-ab4d-7cc2fd577f48
  • Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980. https://arxiv.org/abs/1412.6980
  • Knopp L, Wieland M, Rättich M, Martinis S. 2020. A deep learning approach for burned area segmentation with sentinel-2 data. Remote Sens. 12(15):2422.
  • Kristollari V, Karathanassi V. 2020. Artificial neural networks for cloud masking of Sentinel-2 ocean images with noise and sunglint. Int J Remote Sens. 41(11):4102–4135.
  • Langford Z, Kumar J, Hoffman F. 2018. Wildfire mapping in interior Alaska using deep neural networks on imbalanced datasets. 2018 IEEE International Conference on Data Mining Workshops (ICDMW); Nov 17–20, 2018. IEEE; p. 770–778.
  • Laris PS. 2005. Spatiotemporal problems with detecting and mapping mosaic fire regimes with coarse-resolution satellite data in savanna environments. Remote Sens Environ. 99(4):412–424.
  • Lin TY, Goyal P, Girshick R, He K, Dollár P, editors. 2017. Focal loss for dense object detection. Proceedings of the IEEE International Conference on Computer Vision. p. 2980–2988.
  • Loboda T, O'Neal KJ, Csiszar I. 2007. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens Environ. 109(4):429–442.
  • Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. p. 3431–3440.
  • Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson BA. 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J Photogramm Remote Sens. 152:166–177.
  • Nolde M, Plank S, Riedlinger T. 2020. An adaptive and extensible system for satellite-based, large scale burnt area monitoring in near-real time. Remote Sens. 12(13):2162.
  • Papadomanolaki M, Verma S, Vakalopoulou M, Gupta S, Karantzalos K. 2019. Detecting urban changes with recurrent neural networks from multitemporal sentinel-2 data. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium; July 28, Aug 2, 2019.
  • Pihur V, Datta S, Datta S. 2007. Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach. Bioinformatics. 23(13):1607–1615.
  • Pinto MM, Libonati R, Trigo RM, Trigo IF, DaCamara CC. 2020. A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images. ISPRS J Photogramm Remote Sens. 160:260–274.
  • Prabowo Y, Sakti AD, Pradono KA, Amriyah Q, Rasyidy FH, Bengkulah I, Ulfa K, Candra DS, Imdad MT, Ali S. 2022. Deep learning dataset for estimating burned areas: case study, Indonesia. data. Data. 7(6):78.
  • Quintano C, Fernández-Manso A, Stein A, Bijker W. 2011. Estimation of area burned by forest fires in Mediterranean countries: a remote sensing data mining perspective. For Ecol Manage. 262(8):1597–1607.
  • Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais, N, Prabhat. 2019. Deep learning and process understanding for data-driven Earth system science. Nature. 566(7743):195–204.
  • Ronneberger O, Fischer P, Brox T. MICCAI 2015. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical image computing and computer-assisted intervention – MICCAI 2015. 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Cham, Switzerland: Springer International Publishing.; p. 234–241.
  • Roy DP, Huang H, Boschetti L, Giglio L, Yan L, Zhang HH, Li Z. 2019. Landsat-8 and Sentinel-2 burned area mapping - A combined sensor multi-temporal change detection approach. Remote Sens Environ. 231:111254.
  • Seydi ST, Hasanlou M, Chanussot J. 2022. Burnt-Net: wildfire burned area mapping with single post-fire Sentinel-2 data and deep learning morphological neural network. Ecol Indic. 140:108999.
  • Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M. 2017. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. Deep learning in medical image analysis and multimodal learning for clinical decision support. DLMIA ML-CDS 2017 2017. Lecture notes in computer science. Vol. 10553. Cham, Switzerland: Springer.
  • Wang Z, Yang P, Liang H, Zheng C, Yin J, Tian Y, Cui W. 2022. Semantic segmentation and analysis on sensitive parameters of forest fire smoke using smoke-unet and landsat-8 imagery. Remote Sens. 14:45.
  • Wurm M, Stark T, Zhu XX, Weigand M, Taubenböck H. 2019. Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS J Photogramm Remote Sens. 150:59–69.
  • Zhang J, Lv X, Zhang H, Liu B. 2020. AResU-Net: attention residual u-net for brain tumor segmentation. Symmetry. 12(5):721.
  • Zhao F, Sun R, Zhong L, Meng R, Huang C, Zeng X, Wang M, Li Y, Wang Z. 2022. Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning. Remote Sens Environ. 269:112822.
  • Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J, et al. 2018. UNet++: a nested u-net architecture for medical image segmentation. Deep learning in medical image analysis and multimodal learning for clinical decision support. DLMIA ML-CDS 2018 2018. Lecture notes in computer science. Vol. 11045. Cham, Switzerland: Springer.
  • Zhu W, Huang Y, Zeng L, Chen X, Liu Y, Qian Z, Du N, Fan W, Xie X. 2019. AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys. 46(2):576–589.