456
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fault complexity degree in a coal mine and the implications for risk assessment of floor water inrush

, &
Article: 2293464 | Received 07 Jul 2023, Accepted 06 Dec 2023, Published online: 15 Dec 2023

References

  • Cao Z, Gu Q, Huang Z, Fu J. 2022. Risk assessment of fault water inrush during deep mining. Int J Min Sci Technol. 32(2):423–434. doi: 10.1016/j.ijmst.2022.01.005.
  • Guo X, Shi L. 2014. Research on quantitative analysis of water inrush through risk based on fault impact factor and fault fractal dimension characteristics. J Shand Univ (Eng Sci). 44(5):58–64.
  • Han C, Wei J, Xie D, et al. 2020. Water-richness evaluation of sandstone aquifer based on set pair analysis-variable fuzzy set coupling method: a case from Jurassic Zhiluo formation of Jinjiaqu coal mine in Ningdong mining area. J China Coal Soc. 45(7):2432–2443.
  • He Z, Zhou Y, Liu Y. 2020. System dynamics simulation on China’s energy consumption in 2050: based on the policy scenarios of key industries. J Nat Resour. 35(11):2696–2707. doi: 10.31497/zrzyxb.20201111.
  • Ho W. 2008. Integrated analytic hierarchy process and its applications–A literature review. Eur J Oper Res. 186(1):211–228. doi: 10.1016/j.ejor.2007.01.004.
  • Hu Y, Li W, Wang Q, Liu S, Wang Z.,. 2019. Evaluation of water inrush risk from coal seam floors with an AHP–EWM algorithm and GIS. Environ Earth Sci. 78(10):1–15. doi: 10.1007/s12665-019-8301-5.
  • Jenks GF. 1963. Generalization in statistical mapping. Ann Associat Am Geograp. 53(1):15–26. doi: 10.1111/j.1467-8306.1963.tb00429.x.
  • Jia Z, Lin B. 2021. How to achieve the first step of the carbon-neutrality 2060 target in China: the coal substitution perspective. Energy. 233:121179. doi: 10.1016/j.energy.2021.121179.
  • Lan H, Chen D, Mao D. 2016. Current status of deep mining and disaster prevention in China. Coal Sci Technol. 44(1):39–46.
  • Li J, Zhang H, Feng Y, et al. 2011. Nonlinear analysis of complexity of faults structures in coal mines. Chin J Geol Hazard Control. 22(04):69–73.
  • Li Q, Sui W. 2021. Risk evaluation of mine-water inrush based on principal component logistic regression analysis and an improved analytic hierarchy process. Hydrogeol J. 29(3):1299–1311. doi: 10.1007/s10040-021-02305-3.
  • Li R, Wang Q, Wang X, Liu X, Li J, Zhang Y. 2017. Relationship analysis of the degree of fault complexity and the water irruption rate, based on fractal theory. Mine Water Environ. 36(1):18–23. doi: 10.1007/s10230-015-0348-2.
  • Li S, Liu C, Zhou Z, Li L, Shi S, Yuan Y.,. 2021. Multi-sources information fusion analysis of water inrush disaster in tunnels based on improved theory of evidence. Tunnel Underg Space Technol. 113:103948. doi: 10.1016/j.tust.2021.103948.
  • Liu R, Jiang Y, Li B, Wang X. 2015. A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks. Comput Geotech. 65:45–55. doi: 10.1016/j.compgeo.2014.11.004.
  • Panigrahy C, Seal A, Mahato NK, Bhattacharjee D. 2019. Differential box counting methods for estimating fractal dimension of gray-scale images: a survey. Chaos Solit Fract. 126:178–202. doi: 10.1016/j.chaos.2019.06.007.
  • Qiu M, Shi L, Teng C, Zhou Y. 2017. Assessment of water inrush risk using the fuzzy delphi analytic hierarchy process and grey relational analysis in the Liangzhuang coal mine, China. Mine Water Environ. 36(1):39–50. doi: 10.1007/s10230-016-0391-7.
  • Ruan Z, Li C, Wu A, Wang Y. 2019. A new risk assessment model for underground mine water inrush based on AHP and D–S evidence theory. Mine Water Environ. 38(3):488–496. doi: 10.1007/s10230-018-00575-0.
  • Saaty TL. 1980. The analytic hierarchy process. New York: McGraw-Hill.
  • Sarkar N, Chaudhuri BB. 1994. An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans Syst Man Cybern. 24(1):115–120. doi: 10.1109/21.259692.
  • Shi L, Liu L, Zhou J, et al. 2014. Fault fractal information dimension and its application in floor water burst. Coal Min Technol. 19(1):12–16.
  • Shi L, Teng C, Li C, Wang D. 2015. Influence of fault quantitative on water inrush at floor limestone in Huaheng coal mine. Safety Coal Mines. 46(9):23–26.
  • Sun W, Xue Y. 2019. An improved fuzzy comprehensive evaluation system and application for risk assessment of floor water inrush in deep mining. Geotech Geol Eng. 37(3):1135–1145. doi: 10.1007/s10706-018-0673-x.
  • Wang D, Sui W, Ranville JF. 2022. Hazard identification and risk assessment of groundwater inrush from a coal mine: a review. Bull Eng Geol Environ. 81(10):1–17. doi: 10.1007/s10064-022-02925-3.
  • Wang D, Sui W. 2022. Hydrogeological effects of fault geometry for analysing groundwater inflow in a coal mine. Mine Water Environ. 41(1):93–102. doi: 10.1007/s10230-021-00795-x.
  • Wang M. 1999. A comprehensive analysis method on determining the coefficient in multi-index evaluation. System Eng. (02):56–61.
  • Wang X, Li S, Xu Z, Hu J, Pan D, Xue Y.,. 2019. Risk assessment of water inrush in karst tunnels excavation based on normal cloud model. Bull Eng Geol Environ. 78(5):3783–3798. doi: 10.1007/s10064-018-1294-6.
  • Wu Q, Zhou W, Wang J, Xie S. 2009. Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: application of vulnerability index method to Zhangcun Coal Mine, China. Environ Geol. 57(5):1187–1195. doi: 10.1007/s00254-008-1415-9.
  • Wu Q, Zhu B, Li J, et al. 2008. Numerical simulation of lagging water-inrush mechanism of rock roadways near fault zone. J China Univ Min Technol. 37(6):780–785.
  • Xia W, Wu Z. 2007. Suppliers selection with multiple criteria in volume discount environments. Omega. 35(5):494–504. doi: 10.1016/j.omega.2005.09.002.
  • Xu F, Long R, Xia Y, Xie S. 1991. Quantitive assessment and prediction of geological structure in coal mine. J China Coal Soc. 16(4):93–102.
  • Xue Y, Li Z, Li S, Qiu D, Su M, Xu Z, Zhou B, Tao Y.,. 2019. Water inrush risk assessment for an undersea tunnel crossing a fault: an analytical model. Mar Georesourc Geotechnol. 37(7):816–827. doi: 10.1080/1064119X.2018.1494230.
  • Yang B, Yuan J, Duan L, Liu Q. 2019. Using GIS and fractal theory to evaluate degree of fault complexity and water yield. Mine Water Environ. 38(2):261–267. doi: 10.1007/s10230-018-0563-8.
  • Yin H, Shi Y, Niu H, Xie D, Wei J, Lefticariu L, Xu S.,. 2018. A GIS-based model of potential groundwater yield zonation for a sandstone aquifer in the Juye Coalfield, Shangdong, China. J Hydrol. 557:434–447. doi: 10.1016/j.jhydrol.2017.12.043.
  • Zhou Y, Chen J, Xiao X, Xiong F. 2017. Fractal analysis of fault structures and its application in the assessment of water burst. Chin J Geol Hazard Control. 28(1):115–127.