357
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mudslide susceptibility assessment based on a two-channel residual network

, , , , &
Article: 2300804 | Received 17 Jul 2023, Accepted 26 Dec 2023, Published online: 01 Mar 2024

References

  • Barzinpour F, Taki P. 2018. A dual-channel network design model in a green supply chain considering pricing and transportation mode choice. J Intell Manuf. 29(7):1465–1483. doi: 10.1007/s10845-015-1190-x.
  • Chen W, Zhao X, Zhang H, Liu T, Li C, Wang K. 2020. Hazard assessment of highway debris flow based on the fuzzy comprehensive evaluation method in Northwest Yunnan. Highway. 65: 25–29.
  • Genevois R, Tecca PR, Genevois C. 2022. Mitigation measures of debris flow and landslide risk carried out in two mountain areas of North-Eastern Italy. J Mt Sci. 19(6):1808–1822. doi: 10.1007/s11629-021-7212-6.
  • Gu F, Chen J, Sun X, Li Y, Zhang Y, Wang Q. 2023. Comparison of machine learning and traditional statistical methods in debris flow susceptibility assessment: a case study of Changping District, Beijing. Water. 15(4):705. doi: 10.3390/w15040705.
  • Hakim WL, Rezaie F, Nur AS, Panahi M, Khosravi K, Lee C-W, Lee S. 2022. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. J Environ Manage. 305:114367. doi: 10.1016/j.jenvman.2021.114367.
  • Han R, Jones CK, Lee J, Wu P, Vagdargi P, Uneri A, Helm PA, Luciano M, Anderson WS, Siewerdsen JH. 2022. Deformable MR-CT image registration using an unsupervised, dual-channel network for neurosurgical guidance. Med Image Anal. 75:102292. doi: 10.1016/j.media.2021.102292.
  • He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Hou S, Cao P, Li A, Chen L, Feng Z, Liu J, Wang L. 2021. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation. IOP Conf Ser: Earth Environ Sci. 861(6):62002. doi: 10.1088/1755-1315/861/6/062002.
  • Hu J, Shen L, Sun G. 2018. Squeeze-and-excitation networks. Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Huang X, Zhang Z, Xiang G. 2022. Sensitivity analysis of a built environment exposed to debris flow impacts with 3-D numerical simulations. Natural Hazards Earth System Sci Discus. 2022:1–27.
  • Iverson RM, Reid ME, LaHusen RG. 1997. Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci. 25(1):85–138. doi: 10.1146/annurev.earth.25.1.85.
  • Jie Z, Shikai L, Yunlan G, Hongbing Z, Xiangsheng Y, Weifeng Z, Huazong X, Fan Y. 2015. Analysis and revelation of giant debris flow hazards of August 18, 2010 in Gongshan County, Yunnan Province. J Eng Geol. 23:373–382.
  • Kong Y, Wang B, Wang N, Wei B. 2019. Debris flows risk assessment in the Alpine Canyon of Western Yunnan: a case study in Nujiang Lisu autonomous prefecture. J Yunnan Normal Univ (Natural Sci Ed). 39:63–70.
  • Li S, Lin J, Pan J, Yu H, Gao R, Yang L, Lin Y, Wang D, Li K. 2021. Multifractal characteristics of soil particle-size distribution under different land-usetypes in an area with high frequency debris flow. Chinese J Appl Environ. 27:893–900.
  • Li X, Kong J, Li C. 2010. Application of multi-classification support vector machine in regionalization of debris flow hazards. Bull Soil Water Conserv. 30:128–133.
  • Li Y, Li Y, Zhao Z. 2019. Assessment on susceptibility of debris flow in Lushui based on the certain factor model. Res Soil Water Conserv. 26:336–342.
  • Li Y, Lei Y, Suhang W. 2019. Susceptibility assessment of debris flow in Nujiang befecture based on the catchment. Res Environ Yangtze Basin. 28:2419–2428.
  • Liu H, Chen H. 2012. Hazard assessment of debris flow based on uncertainty measure theory and AHP. Res Environ Yangtze Basin. 21:1032–1038.
  • Liu X, Shu X, Liu X, Duan Z, Ran Z. 2020. Risk assessment of debris flow in Ya’an city based on BP neural network. Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing. doi: 10.1088/1757-899X/794/1/012006.
  • Lo S, Xu Z. 2016. Basin morphology characteristics of the giant debris flow in the Dongyuege gully near the Nujiang River. Hydrogeol Eng Geol. 43:1–11.
  • Lombardo L, Bachofer F, Cama M, Märker M, Rotigliano E. 2016. Exploiting maximum entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north‐eastern Sicily, Italy). Earth Surf Processes Landf. 41(12):1776–1789. doi: 10.1002/esp.3998.
  • Meyer NK, Dyrrdal AV, Frauenfelder R, Etzelmüller B, Nadim F. 2012. Hydrometeorological threshold conditions for debris flow initiation in Norway. Nat Hazards Earth Syst Sci. 12(10):3059–3073. doi: 10.5194/nhess-12-3059-2012.
  • Pal SC, Chakrabortty R, Saha A, Bozchaloei SK, Pham QB, Linh NTT, Anh DT, Janizadeh S, Ahmadi K. 2022. Evaluation of debris flow and landslide hazards using ensemble framework of Bayesian- and tree-based models. Bull Eng Geol Environ. 81(1):55. doi: 10.1007/s10064-021-02546-2.
  • Qiao Y, Liu T, Chen L. 2020. Massflow model-based hazard assessment on Erma Gully Debris Flow in Minxian County of Gansu Province. Water Resour Hydraul Eng. 51:184–192. doi: 10.13928/j.cnki.wrahe.2020.04.022.
  • Qiu S, Xu Y, Xu Y, Zhao X, Long L, Ji D, Yang Z. 2022. Spatio-temporal variations characteristics and differences of water temperature in upper and middle reaches of Lancang-Nujiang River. Res Environ Yangtze Basin. 31:2186–2196.
  • Song X, Guo F, Xie Y. 2014. Hazard assessment of and countermeasures for Zhaodaisuo gully in Longnan City. J Lanzhou Univ (Natural Sci Ed). 50:639–644.
  • Wang M, Wang N, Wang J, Yu T, Jiang Y, Huang X. 2018. On particle composition characteristics of debris flow deposits in different lithologic regions-by the example of middle and upper reaches of the Taxkorgan River. Acta Geologica Sichuan. 38:680–684.
  • Wang X, Zhao K, Jiang Y, Zhu W. 2022. Study on dynamic zoning model of mud-rock flow susceptibility in Nujiang basinbased on BP neural network. Ind Miner Process. 51:39–43. doi: 10.16283/j.cnki.hgkwyjg.2022.01.008.
  • Wang Y, Tang C, Li W, He C. 2017. Application of GIS-based fuzzy mathematics model to sensitivity evaluation of debris flow. Chin J Nat Disasters. 26:19–26.
  • Wu Y-H, Liu K-F, Chen Y-C. 2013. Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study. J Mt Sci. 10(2):293–304. doi: 10.1007/s11629-013-2511-1.
  • Xie M, Liu X, Wang Z, Hu M. 2011. A 3-D remote sensing system based on assessment of debris flow and impact areasimulation. Hydrogeol Eng Geol. 38:115–119.
  • Xu H, Huang J. 2015. Hazard assessment of debris flows in Lanping County of Nujiang Prefecture based on key driving force. J Yunnan Univ-Natural Sci Ed. 37:240–249.
  • Xu F, Wang B. 2022. Debris flow susceptibility mapping in mountainous area based on multi-source data fusion and CNN model—taking Nujiang Prefecture, China as an example. Int J Digital Earth. 15(1):1966–1988. doi: 10.1080/17538947.2022.2142304.
  • Xu F, Wang B, Han J. 2023. A potential gully debris flows hazard assessment method: a CNN model based on multisource data fusion. J Geo-Info Sci. 25:588–605.
  • Yang T, Tang C, Zhu J-y, Liu X-l, H-L XU, Yang C-z 2018. Hazard assessment of debris flow in small watershed of Miansi town, Wenchuan, Sichuan Province. J Yangtze River Sci Res Instit. 35:82.
  • Yang Y. 2020. Grey relational analysis on influencing factors of highway slope safety in Ankang mountain area. IJSSE. 10(5):721–726. doi: 10.18280/ijsse.100518.
  • Yang Z, Han L, Zheng X, Li W, Feng L, Wang Y, Yang Y. 2022. Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide. Remote Sens Nat Resour. 34:224–230.
  • Yang ZQ, Zhu YY, Zou DS, Liao LP. 2011. Activity degree evaluation of glacial debris flow along international Karakorum Highway (KKH) based on fuzzy theory. AMR. 261–263:1167–1171. doi: 10.4028/www.scientific.net/AMR.261-263.1167.
  • Yao Z, Liu J, Niu B, Sun H. 2019. Influence of drainage area on development of debris flow in Gully. Res Environ Eng Geol. 33:217.
  • Youssef AM, Pradhan B, Dikshit A, Al-Katheri MM, Matar SS, Mahdi AM. 2022. Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: comparison of their performance at Asir Region, KSA. Bull Eng Geol Env. 81:165.
  • Zhang K, Cheng K, Li J, Peng Y. 2019. A channel pruning algorithm based on depth-wise separable convolution unit. IEEE Access. 7:173294–173309. doi: 10.1109/ACCESS.2019.2956976.
  • Zhang P, Ma J, Shu H, Wang G. 2014. Numerical simulation of erosion and deposition debris flow based on FLO-2D Model. J Lanzhou Univ. 50:363–368.
  • Zhang Z, Zhang S, Lin Y, Chen Q, Feng T, Yan H, He S, Wang H. 2023. Characteristics of benthic community structure and their relationships with environmental factors in rivers at different orders within the source area of the Nu River. Acta Sci Circum. 43:350–361. doi: 10.13671/j.hjkxxb.2023.0172.
  • Zhao Y. 2020. Machine learning based identification of potential low-frequency debris flow catchments in the Bailong River basin [Ph.D. thesis]. Lanzhou University.
  • Zhu Y, Yu B, Xing Q, Wang T, Chen Y. 2014. Topographical factors in the formation of Gully type debris flows in the upper reaches of Minjiang River. J Jilin Univ (Earth Sci Ed.). 44:268–277.