885
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine learning and SHAP-based susceptibility assessment of storm flood in rapidly urbanizing areas: a case study of Shenzhen, China

, , , &
Article: 2311889 | Received 10 Mar 2023, Accepted 24 Jan 2024, Published online: 08 Feb 2024

References

  • Benito G, Lang M, Barriendos M, Llasat MC, Frances F, Ouarda T, Thorndycraft VR, Enzel Y, Bardossy A, Coeur D, et al. 2004. Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods. Nat Hazards. 31(3):623–643. doi: 10.1023/B:NHAZ.0000024895.48463.eb.
  • Bergstra J, Bengio Y. 2012. Random search for hyper-parameter optimization. J Mach Learn Res. 13(1):281–305.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.), doi: 10.1023/A:1010933404324.
  • Budholiya K, Shrivastava SK, Sharma V. 2022. An optimized xgboost based diagnostic system for effective prediction of heart disease. J King Saud Univ - Comput Inform Sci. 34(7):4514–4523. doi: 10.1016/j.jksuci.2020.10.013.
  • Chang I, Park H, Hong E, Lee J, Kwon N. 2022. Predicting effects of built environment on fatal pedestrian accidents at location-specific level: application of xgboost and shap. Accid Anal Prev. 166:106545. doi: 10.1016/j.aap.2021.106545.
  • Chen D, Zhang F, Zhang M, Meng Q, Jim CY, Shi J, Tan ML, Ma X. 2022. Landscape and vegetation traits of urban green space can predict local surface temperature. Sci Total Environ. 825:154006. 10.1016/j.scitotenv.2022.154006.
  • Chen TQ, Guestrin C, Assoc CM. 2016. Xgboost: a scalable tree boosting system. Proceeding of the 22nd acm sigkdd International Conference on Knowledge Discovery and Data Mining, 785 – 794. doi: 10.1145/2939672.2939785.
  • Chen W, Hong H, Li S, Shahabi H, Wang Y, Wang X, Ahmad BB. 2019. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J Hydrol (Amst). 575:864–873. doi: 10.1016/j.jhydrol.2019.05.089.
  • Cheng T, Xu Z, Hong S, Song S. 2017. Flood risk zoning by using 2d hydrodynamic modeling: a case study in Jinan City. Math Probl Eng. 2017:1–8. doi: 10.1155/2017/5659197.
  • Bisht DS, Chatterjee C, Kalakoti S, Upadhyay P, Sahoo M, Panda A., 2016. Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study. Nat Hazards. 84(2):749–776. doi: 10.1007/s11069-016-2455-1.
  • Du S, Van Rompaey A, Shi P, Wang JA. 2015. A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation. Nat Hazards. 77(1):111–128. doi: 10.1007/s11069-014-1583-8.
  • Felder G, Zischg A, Weingartner R. 2017. The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation. J Hydrol. 550:157–165. doi: 10.1016/j.jhydrol.2017.04.052.
  • Hawker L, Uhe P, Paulo L, Sosa J, Savage J, Sampson C, Neal J. 2022. A 30 m global map of elevation with forests and buildings removed. Environ Res Lett. 17(2):024016. doi: 10.1088/1748-9326/ac4d4f.
  • He Q, Shahabi H, Shirzadi A, Li S, Chen W, Wang N, Chai H, Bian H, Ma J, Chen Y, et al. 2019. Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF classifier, and RBF network machine learning algorithms. Sci Total Environ. 663:1–15. doi: 10.1016/j.scitotenv.2019.01.329.
  • Hénonin J, Hongtao M, Zheng-Yu Y, Hartnack J, Havnø K, Gourbesville P, Mark O., 2015. Citywide multi-grid urban flood modelling: the July 2012 flood in Beijing. Urban Water J. 12(1):52–66. doi: 10.1080/1573062X.2013.851710.
  • Jaafari A, Zenner EK, Pham BT. 2018. Wildfire spatial pattern analysis in the Zagros mountains, Iran: a comparative study of decision tree based classifiers. Ecol Inform. 43:200–211. doi: 10.1016/j.ecoinf.2017.12.006.
  • Jang E, Kim YJ, Im J, Park Y, Sung T. 2022. Global sea surface salinity via the synergistic use of SMAP satellite and HYCOM data based on machine learning. Remote Sens Environ. 273:112980. doi: 10.1016/j.rse.2022.112980.
  • Jenson K, Domingue O. 1988. Extracting topographic structure from digital elevation data for geographic system analysis. Pe. & RS. 54(11)
  • Jiang W, Deng L, Chen L, Wu J, Li J. 2009. Risk assessment and validation of flood disaster based on fuzzy mathematics. Prog Nat Sci. 19(10):1419–1425. doi: 10.1016/j.pnsc.2008.12.010.
  • Li Q, Jiang X, Liu D. 2013. Analysis and modelling of flood risk assessment using information diffusion and artificial neural network. WSA. 39(5):643–648. doi: 10.4314/wsa.v39i5.8.
  • Li R, Cui L, Fu H, Meng Y, Li J, Guo J. 2020. Estimating high-resolution PM1 concentration from Himawari-8 combining extreme gradient boosting-geographically and temporally weighted regression (XGBoost-GTWR). Atmos Environ. 229 (1994):117434. doi: 10.1016/j.atmosenv.2020.117434.
  • Li S, Fan Z. 2022. Evaluation of urban green space landscape planning scheme based on pso-bp neural network model. Alex Eng J. 61(9):7141–7153. doi: 10.1016/j.aej.2021.12.057.
  • Liang ZC, Zhao YL, Fu YC. 2017. Optimization of spatial pattern of urban imperviousness based on the integration of scs-cn hydrological model and the ant colony algorithm. J Geo-Inform Sci. 19(10):1315–1326.
  • Liu X, Zhu X, Zhang Q, Yang T, Pan Y, Sun P. 2020. A remote sensing and artificial neural network-based integrated agricultural drought index: index development and applications. Catena (Amst). 186:104394. doi: 10.1016/j.catena.2019.104394.
  • Liu H. 2022. Optimal selection of control parameters for automatic machining based on bp neural network. Energy Rep. 8:7016–7024. doi: 10.1016/j.egyr.2022.05.038.
  • Liu WD, Tang ZP, Xia Y, Han MY, Jiang WB. 2019. Identifying the key factors influencing chinese carbon intensity using machine learning, the random forest algorithm, and evolutionary analysis. Acta Geogr Sin. 74(12):2592–2603.
  • Lu W. 2022. Machine learning formula derivation and code implementation. People’s posts and telecommunications Press, Beijing.
  • Lundberg SM, Lee SI. 2017. A unified approach to interpreting model predictions . Advances in neural information processing systems 30 (NIPS 2017), Long Beach, CA, USA, Curran Associates Inc. pp . 4768–4777.
  • Luo K, Zhang X. 2022. Increasing urban flood risk in China over recent 40 years induced by lucc. Landsc Urban Plan. 219:104317. doi: 10.1016/j.landurbplan.2021.104317.
  • Ma M, Zhao G, He B, Li Q, Dong H, Wang S, Wang Z. 2021. Xgboost-based method for flash flood risk assessment. J Hydrol (Amst). 598:126382. doi: 10.1016/j.jhydrol.2021.126382.
  • Marjanović M, Kovačević M, Bajat B, Voženílek V. 2011. Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol. 123(3):225–234. doi: 10.1016/j.enggeo.2011.09.006.
  • Qian Y, Wang H, Wu J. 2021. Protecting existing urban green space versus cultivating more green infrastructures: strategies choices to alleviate urban waterlogging risks in Shenzhen. Remote Sens (Basel). 13(21):4433. doi: 10.3390/rs13214433.
  • Rui XF, Jiang CY, Chen QJ, Ding XY. 2015. Principle analysis and application of storm water management model on stimulating rainfall-runoff. Adv Sci Technol Water Res. 4(35):1–5.
  • Smith MB. 1993. A GIS‐based distributed parameter hydrologic model for urban areas. Hydrol Process. 7(1):45–61. doi: 10.1002/hyp.3360070106.
  • Su BN, Huang H, Zhang N. 2015. Dynamic urban waterlogging risk assessment method based on scenario simulations. J Tsinghua Univ (Sci Technol). 55(06):684–690.
  • Tang X, Hong H, Shu Y, Tang H, Li J, Liu W. 2019. Urban waterlogging susceptibility assessment based on a pso-svm method using a novel repeatedly random sampling idea to select negative samples. J Hydrol (Amst). 576:583–595. doi: 10.1016/j.jhydrol.2019.06.058.
  • Tang X, Shu Y, Lian Y, Zhao Y, Fu Y. 2018. A spatial assessment of urban waterlogging risk based on a weighted Naïve Bayes classifier. Sci Total Environ. 630:264–274. doi: 10.1016/j.scitotenv.2018.02.172.
  • Tan Y, Cheng Q, Lyu F, Liu F, Liu L, Su Y, Yuan S, Xiao W, Liu Z, Chen Y. 2024. Hydrological reduction and control effect evaluation of sponge city construction based on one-way coupling model of SWMM-FVCOM: a case in university campus. J Environ Manage. 349:119599. 10.1016/j.jenvman.2023.119599.
  • Tingsanchali T, Karim F. 2010. Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol Sci J/J Des Sci Hydrol. 55(2):145–161. doi: 10.1080/02626660903545987.
  • Vega García M, Aznarte JL. 2020. Shapley additive explanations for no2 forecasting. Ecol Inform. 56:101039. doi: 10.1016/j.ecoinf.2019.101039.
  • Wang WW, Wang Q, Lin H, Gong JD, Zhang SW. 2015. Summarization and prospection for the studies on China’s urban waterlogging. Urban Problems. (10), :24–28.
  • Wang Z, Lai C, Chen X, Yang B, Zhao S, Bai X. 2015. Flood hazard risk assessment model based on random forest. J Hydrol (Amst). 527:1130–1141. doi: 10.1016/j.jhydrol.2015.06.008.
  • Woznicki SA, Baynes J, Panlasigui S, Mehaffey M, Neale A. 2019. Development of a spatially complete floodplain map of the conterminous United States using random forest. Sci Total Environ. 647:942–953. doi: 10.1016/j.scitotenv.2018.07.353.
  • Wu JS, Zhang PH. 2017. The effect of urban landscape pattern on urban waterlogging. Geogr Sin. 72(03):444–456.
  • Xiao XW, Shen XY, Ke CQ, Zhou XH. 2020. Comparison of machine learning algorithms based on sentinel-1a data to detect icebergs. Acta Geod Cartogr Sin. 49(04):509–521.
  • Xu Y, Zhen JN, Jiang XP, Wang JJ. 2021. Mangrove species classification with UAV-based remote sensing data and xgboost. Natl Remote Sen Bull. 25(3):737–752. doi: 10.11834/jrs.20210281.
  • Yang LY, Chen YB. 2021. Information extraction and analysis on temporal and spatial pattern changes of surfaces impervious to water in Shenzhen City during 1979-2020. Bull Soil Water Conserv. 41(05):198–205.
  • Yang XL, Ding JH, Hou H. 2013. Application of a triangular fuzzy ahp approach for flood risk evaluation and response measures analysis. Nat Hazards. 68(2):657–674. doi: 10.1007/s11069-013-0642-x.
  • Ye C, Xu Z, Lei X, Chen Y, Ding X, Liang Y. 2023. Flood simulation and risk analysis on urban block scale based on swmm and infoworks icm. Water Resources Protection. 39(02):87–94.
  • Zhang L, Wang LL, Zhang XD, Liu SR, Sun PS, Wang TQ. 2014. The basic principle of random forest and its applications in ecology: a case study of Pinus yunnanensis. Acta Ecol Sin. 34(03):650–659.
  • Zhang Q, Wu Z, Zhang H, Dalla Fontana G, Tarolli P. 2020. Identifying dominant factors of waterlogging events in metropolitan coastal cities: the case study of guangzhou, china. J Environ Manage. 271:110951. doi: 10.1016/j.jenvman.2020.110951.
  • Zhao G, Pang B, Xu Z, Peng D, Xu L. 2019. Assessment of urban flood susceptibility using semi-supervised machine learning model. Sci Total Environ. 659:940–949. doi: 10.1016/j.scitotenv.2018.12.217.
  • Zou Q, Zhou J, Zhou C, Song L, Guo J. 2013. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch Environ Res Risk Assess. 27(2):525–546. doi: 10.1007/s00477-012-0598-5.