622
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Seismic microzonation and soil-structure resonance analysis in Suryabinayak Municipality, Bhaktapur, Nepal: insights from ambient vibration measurements

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2311892 | Received 04 Sep 2023, Accepted 24 Jan 2024, Published online: 04 Mar 2024

References

  • Al-Nimry H, Resheidat M, Al-Jamal M. 2014. Ambient vibration testing of low and medium rise infilled RC frame buildings in Jordan. Soil Dyn Earthq Eng. 59:21–29. doi: 10.1016/j.soildyn.2014.01.002.
  • Álvarez BI, Palma HB, Besenzon D, Vera-Grunauer X, Amoroso S. 2022. in the Guayaquil city through in situ and laboratory tests. S&R. 45(3):1–15. doi: 10.28927/SR.2022.07402.
  • [ASTM] American Society for Testing and Materials. 1996. Standard practice for classification of soils for engineering purposes (unified soil classification system) 1. West Conshohocken (PA): American Society for Testing and Materials.
  • Ashford SA, Sitar N, Lysmer J, Deng N. 1997. Topographic effects on the seismic response of steep slopes. Bull Seismol Soc Am. 87(3):701–709. doi: 10.1785/BSSA0870030701.
  • Bazzurro P, Cornell CA. 2004. Ground-motion amplification in nonlinear soil sites with uncertain properties. Bull Seismol Soc Am. 94(6):2090–2109. doi: 10.1785/0120030215.
  • Bhandary NP, Paudyal YR, Okamura M. 2021. Resonance effect on shaking of tall buildings in Kathmandu Valley during the 2015 Gorkha earthquake in Nepal. Environ Earth Sci. 80(13):1–16. doi: 10.1007/s12665-021-09754-9.
  • Bijukchhen SM, Takai N, Shigefuji M, Ichiyanagi M, Sasatani T, Sugimura Y. 2017. Estimation of 1-D velocity models beneath strong-motion observation sites in the Kathmandu Valley using strong-motion records from moderate-sized earthquakes. Earth Planets Sp. 69(1):1–16. doi: 10.1186/s40623-017-0685-4.
  • Birgören G, Özel O, Siyahi B. 2009. Bedrock depth mapping of the coast south of Istanbul: comparison of analytical and experimental analyses. Turkish J Earth Sci. 18(2):315–329. doi: 10.3906/yer-0712-3.
  • Bonnefoy-Claudet S, Kohler A, Cornou C, Wathelet M, Bard P-Y. 2008. Effects of love waves on microtremor H/V ratio. Bull Seismol Soc Am. 98(1):288–300. doi: 10.1785/0120070063.
  • censusnepal.cbs.gov.np. [accessed 2023 Nov 4]. https://censusnepal.cbs.gov.np/.
  • Chapagain SK, Pandey VP, Shrestha S, Nakamura T, Kazama F. 2010. Assessment of deep groundwater quality in Kathmandu Valley using multivariate statistical techniques. Water Air Soil Pollut. 210(1-4):277–288. doi: 10.1007/s11270-009-0249-8.
  • Chaulagain H, Gautam D, Rodrigues H. 2018. Revisiting major historical earthquakes in Nepal: overview of 1833, 1934, 1980, 1988, 2011, and 2015 seismic events. In: Gautam D and Rodrigues H, editors Impact and Insights of the Gorkha Earthquake. Elsevier; p. 1–17. doi: 10.1016/B978-0-12-812808-4.00001-8.
  • Chiauzzi L, Masi A, Mucciarelli M, Cassidy JF. 2012. Estimate of fundamental period of reinforced concrete buildings: code provisions vs. experimental measures in Victoria and Vancouver (BC, Canada). In: 15th world conference on Earthquake Engineering 2012; Sept 24–28; Lisboa, Portugal: Sociedade Portuguesa de Engenharia Sismica (SPES).
  • Cox BR, Cheng T, Vantassel JP, Manuel L. 2020. A statistical representation and frequency-domain window-rejection algorithm for single-station HVSR measurements. Geophys J Int. 221(3):2170–2183. doi: 10.1093/gji/ggaa119.
  • D’Amico VERA, Picozzi M, Albarello D, Naso G, Tropenscovino S. 2004. Quick estimate of soft sediment thicknesses from ambient noise horizontal to vertical spectral ratios : a case study in southern Italy. J Earthq Eng. 8(6):895–908. doi: 10.1080/13632460409350513.
  • Dangol GM. 1985. Geology of the Kathmandu fluviatile lacustrine sediments in the light of new vertebrate fossil occurrences. J Nepal Geol Soc. 3:43–57.
  • Darendeli M. 2001. Development of a new family of normalized modulus reduction and material damping curves. USA: The University of Texas at Austin.
  • Fäh D, Kind F, Giardini D. 2001. A theoretical investigation of average HIV ratios. Geophys J Int. 145(2):535–549. doi: 10.1046/j.0956-540x.2001.01406.x.
  • Falcone G, Elia G, di Lernia A. 2023. Investigating the influence of a pre-existing shear band on the seismic response of ideal step-like slopes subjected to weak motions: preliminary results. Geosciences. 13(5):148. doi: 10.3390/geosciences13050148.
  • Fayjaloun R, Negulescu C, Roullé A, Auclair S, Gehl P, Faravelli M. 2021. Sensitivity of earthquake damage estimation to the input data (soil characterization maps and building exposure): case study in the Luchon Valley, France. Geosciences. 11(6):249. doi: 10.3390/geosciences11060249.
  • Field E, Jacob K. 1993. The theoretical response of sedimentary layers to ambient seismic noise. Geophys Res Lett. 20(24):2925–2928. doi: 10.1029/93GL03054.
  • Gallipoli MR, Calamita G, Tragni N, Pisapia D, Lupo M, Mucciarelli M, Stabile TA, Perrone A, Amato L, Izzi F, et al. 2020. Evaluation of soil-building resonance effect in the urban area of the city of Matera (Italy). Eng Geol. 272:105645. doi: 10.1016/j.enggeo.2020.105645.
  • Gallipoli MR, Mucciarelli M, Castro RR, Monachesi G, Contri P. 2004. Structure, soil-structure response and effects of damage based on observations of horizontal-to-vertical spectral ratios of microtremors. Soil Dyn Earthq Eng. 24(6):487–495. doi: 10.1016/j.soildyn.2003.11.009.
  • Geli L, Bard PY, Jullien B. 1988. The effect of topography on earthquake ground motion: a review and new results. Bull Seismol Soc Am. 78(1):42–63. doi: 10.1785/BSSA0780010042.
  • Goda K, Kiyota T, Pokhrel RM, Chiaro G, Katagiri T, Sharma K, Wilkinson S. 2015. The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey. Front Built Environ. 1:1–15. doi: 10.3389/fbuil.2015.00008.
  • Gosar A. 2010. Site effects and soil-structure resonance study in the Kobarid basin (NW Slovenia) using microtremors. Nat Hazards Earth Syst Sci. 10(4):761–772. doi: 10.5194/nhess-10-761-2010.
  • Gosar A, Rošer J, Motnikar BŠ, Zupančič P. 2010. Microtremor study of site effects and soil-structure resonance in the city of Ljubljana (central Slovenia). Bull Earthquake Eng. 8(3):571–592. doi: 10.1007/s10518-009-9113-x.
  • Herak M. 2011. Overview of recent ambient noise measurements in Croatia in free-field and in buildings. Geofizika. 28(1):21–40.
  • Hong L, Hwang W. 2000. Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan. Earthquake Eng Struct Dyn. 29(3):327–337. doi: 10.1002/(SICI)1096-9845(200003)29:3<327::AID-EQE907>3.0.CO;2-0.
  • Hough SE, Bilham R. 2008. Site response of the Ganges basin inferred from re-evaluated macroseismic observations from the 1897 Shillong, 1905 Kangra, and 1934 Nepal earthquakes. J Earth Syst Sci. 117(S2):773–782. doi: 10.1007/s12040-008-0068-0.
  • Kanai K, Tanaka T. 1961. On microtremors. VIII. Bull Earthq Res Inst. 39:97–114.
  • Kawan CK, Maskey PN, Motra G. 2019. Spatial variation of silt and clay sediment deposit in Bhaktapur city. J Sci Eng. 7:34–43. doi: 10.3126/jsce.v7i0.26788.
  • Kawan CK, Maskey PN, Motra GB. 2022. A study of local soil effect on the earthquake ground motion in Bhaktapur City, Nepal using equivalent linear and non-linear analysis. Iran J Sci Technol Trans Civ Eng. 46(6):4481–4498. doi: 10.1007/s40996-022-00858-1.
  • Khanal A, Dahal RK, Bijukchhen SM. 2023. A study of soil characteristics using ambient vibration measurement at Hetauda, Bagmati Province, Central Nepal. In: XIV IAEG Congress 2023; Sept 21–27.Chengdu, China; IAEG China National Group; p. 205.
  • Kim HS, Sun CG, Cho HI. 2018. Geospatial assessment of the post-earthquake hazard of the 2017 Pohang earthquake considering seismic site effects. IJGI. 7(9):375. doi: 10.3390/ijgi7090375.
  • Konno K, Ohmachi T. 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am. 88(1):228–241. doi: 10.1785/BSSA0880010228.
  • Kramer SL. 1996. Geotechnical earthquake engineering. Hall WJ, editor. Upper saddle River, NJ: Prentice-Hall International Series in Civil Engineering and Engineering Mechanics.
  • Kumar N, Narayan JP. 2018. Quantification of site-city interaction effects on the response of structure under double resonance condition. Geophys J Int. 212(1):422–441. doi: 10.1093/gji/ggx397.
  • Lermo J, Chávez-García FJ. 1994a. Are microtremors useful in site response evaluation? Bull - Seismol Soc Am. 84(5):1350–1364. doi: 10.1016/0148-9062(95)93340-u.
  • Lermo J, Chávez-García FJ. 1994b. Site-Effect-Evaluation-at-Mexico-City: dominant period and relative amplification from strong motion and microtremor records. Soil Dyn Earthq Eng. 13(6):413–423. doi: 10.1016/0267-7261(94)90012-4.
  • Magaro F. 2016. Environmental and building seismic risk: HVSR analysis and technique—Theoretical aspects and environmental aspects. Italy: University of calabria.
  • Mahmood K, Khan SA, Iqbal Q, Karim F, Iqbal S. 2020. Equivalent linear and nonlinear site-specific ground response analysis of Pashto Cultural Museum Peshawar, Pakistan. Iran J Sci Technol Trans Civ Eng. 44(S1):179–191. doi: 10.1007/s40996-020-00346-4.
  • Manne A, Satyam ND. 2013. Estimation of local site effects using microtremor testing in Vijayawada City, India. Geotech Lett. 3(4):173–179. doi: 10.1680/geolett.13.00033.
  • Mayoral JM, Asimaki D, Tepalcapa S, Wood C, Roman-de la Sancha A, Hutchinson T, Franke K, Montalva G. 2019. Site effects in Mexico City basin: past and present. Soil Dyn Earthq Eng. 121(February):369–382. doi: 10.1016/j.soildyn.2019.02.028.
  • McGowan SM, Jaiswal KS, Wald DJ. 2016. Using structural damage statistics to derive macroseismic intensity within the Kathmandu valley for the 2015 M7.8 Gorkha, Nepal earthquake. Tectonophysics. 714-715:158–172. doi: 10.1016/j.tecto.2016.08.002.
  • [MoHA] Ministry of Home Affairs. 2015. Nepal disaster report 2015. Kathmandu: Ministry of Home Affairs.
  • Molnar S, Sirohey A, Assaf J, Bard P-Y, Castellaro S, Cornou C, Cox B, Guillier B, Hassani B, Kawase H, et al. 2022. A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method. J Seismol. 26(4):653–685. doi: 10.1007/s10950-021-10062-9.
  • Mori F, Mendicelli A, Falcone G, Acunzo G, Spacagna RL, Naso G, Moscatelli M. 2022. Ground motion prediction maps using seismic-microzonation data and machine learning. Nat Hazards Earth Syst Sci. 22(3):947–966. doi: 10.5194/nhess-22-947-2022.
  • Nakamura Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railw Tech Res Inst Q Rep. 30(1):25–33.
  • Nakamura Y. 1997. Seismic vulnerability indices for ground and structures using microtremor. In: World Congress on Railway Research. p. 1–7. Florence, Italy: WCRR.
  • Nogoshi M, Igarashi T. 1971. On the amplitude characteristics of ambient noise (part 2). J Atmos Ocean Technol. 24(1):26–40.
  • Ohsumi T, Mukai Y, Fujitani H. 2016. Investigation of damage in and around Kathmandu Valley related to the 2015 Gorkha, Nepal Earthquake and beyond. Geotech Geol Eng. 34(4):1223–1245. doi: 10.1007/s10706-016-0023-9.
  • Okada H. 2003. The microtremor survey method. USA: Society of exploration geophysicists with the cooperation of Society of exploration geophysicists of Japan and Australian society of exploration geophysicists. doi: 10.1190/1.9781560801740.fm.
  • Osorio L, Mayoral JM. 2013. Seismic microzonation for the northeast Texcoco lake area, Mexico. Soil Dyn Earthq Eng. 48:252–266. doi: 10.1016/j.soildyn.2013.01.013.
  • Öziçer S, Uyanik O, Timur E. 2017. Investigation of period and resonance risk of buildings with various heights using microtremor method. In: 9th Congress of the Balkan Geophysical Society BGS 2017; Nov 5–9; Antalya, Turkey. The Netherlands: European Association of Geoscientists and Engineers (EAGE). doi: 10.3997/2214-4609.201702586.
  • Pandey MR, Molnar P. 1988. The distribution of intensity of Bihar-Nepal Earthquake of 15 January 1934 and bounds on the extent of the rupture zone. J Nepal Geol Soc. 5(1):22–24.
  • Parolai S, Fäcke A, Richwalski SM, Stempniwski L. 2005. Assessing the vibrational frequencies of the Holweide Hospital in the City of Cologne (Germany) by means of ambient seismic noise analysis and FE modelling. Nat Hazards. 34(2):217–230. doi: 10.1007/s11069-004-0686-z.
  • Paudel MR, Sakai H. 1970. Stratigraphy and depositional environments of basin-fill sediments in southern Kathmandu Valley, Central Nepal. Bull Dept Geol. 11:61–70. doi: 10.3126/bdg.v11i0.1544.
  • Paudyal YR, Bhandary NP, Yatabe R. 2012. Seismic microzonation of densely populated area of Kathmandu Valley of Nepal using microtremor observations. J Earthq Eng. 16(8):1208–1229. doi: 10.1080/13632469.2012.693242.
  • Paudyal YR, Yatabe R, Bhandary NP, Dahal RK. 2012. Basement topography of the Kathmandu Basin using microtremor observation. J Asian Earth Sci. 62:627–637. doi: 10.1016/j.jseaes.2012.11.011.
  • Pegah E, Liu H. 2016. Application of near-surface seismic refraction tomography and multichannel analysis of surface waves for geotechnical site characterizations: a case study. Eng Geol. 208:100–113. doi: 10.1016/j.enggeo.2016.04.021.
  • Rana JB. 1935. Nepal ko Maha Bhukampa (Great earthquake of Nepal). Kathmandu: Jorganesh Press.
  • Rizzitano S, Cascone E, Biondi G. 2014. Coupling of topographic and stratigraphic effects on seismic response of slopes through 2D linear and equivalent linear analyses. Soil Dyn Earthq Eng. 67:66–84. doi: 10.1016/j.soildyn.2014.09.003.
  • Rochman JPGN, Sadewa MA, Putra AM. 2023. Earthquake microzonation using microtremor analysis and horizontal to vertical spectral ratio method study case at Ampelgading and Tirtoyudo Sub-district, Malang, East Java. In: Susanti E, Juhari J, Nafie Jauhari M, editors. Proceedings of the 12th International Conference on Green Technology (ICGT 2022); Malang, Indonesia; Oct 26–27. Atlantic press; p. 127–136. doi: 10.2991/978-94-6463-148-7_14.
  • Sabetta F, Fiorentino G, Bocchi F, Sinibaldi M, Falcone G, Mendicelli A. 2023. Influence of local site effects on seismic risk maps and ranking of Italian municipalities. Bull Earthquake Eng. 21(5):2441–2468. doi: 10.1007/s10518-023-01619-9.
  • Sakai H. 2001. Stratigraphic division and sedimentary facies of the Kathmandu Basin Group, Central Nepal. J Nepal Geol Soc. 25:19–32.
  • Sakai H, Fujii R, Kuwahara Y. 2002. Changes in the depositional system of the Paleo-Kathmandu Lake caused by uplift of the Nepal Lesser Himalayas. J Asian Earth Sci. 20(3):267–276. doi: 10.1016/S1367-9120(01)00046-3.
  • Sanchez-Sesma FJ. 1987. Seismic response of topographies and alluvial basins. Soil Dyn Earthq Eng. 6(2):124–132. doi: 10.1016/0267-7261(87)90022-4.
  • Satyam ND, Towhata I. 2016. Site-specific ground response analysis and liquefaction assessment of Vijayawada City (India). Nat Hazards. 81(2):705–724. doi: 10.1007/s11069-016-2166-7.
  • SESAME. 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. [place unknown]: European Commission -Research General Directorate.
  • Sextos A, De Risi R, Pagliaroli A, Foti S, Passeri F, Ausilio E, Cairo R, Capatti MC, Chiabrando F, Chiaradonna A, et al. 2018. Local site effects and incremental damage of buildings during the 2016 Central Italy Earthquake sequence. Earthq Spectra. 34(4):1639–1669. doi: 10.1193/100317EQS194M.
  • Shakya M, Kawan CK. 2016. Reconnaissance based damage survey of buildings in Kathmandu Valley: an aftermath of 7.8Mw, 25 April 2015 Gorkha (Nepal) earthquake. Eng Fail Anal. 59(April):161–184. doi: 10.1016/j.engfailanal.2015.10.003.
  • Sharma K, Subedi M, Parajuli RR, Pokharel B. 2017. Effects of surface geology and topography on the damage severity during the 2015 Nepal Gorkha earthquake. Lowl Technol Int. 18(4):269–282.
  • Shrestha OM, Koirala A, Hanisch J, Busch K, Kerntke M, Jäger S. 1999. A geo-environmental map for the sustainable development of the Kathmandu Valley, Nepal. GeoJournal. 49(2):165–172. doi: 10.1023/A:1007076813975.
  • Shrestha OM, Koirala A, Karmacharya SL, Pradhananga UB, Pradhan PM, Karmacharya R. 1998. Engineering and environmental geological map of the Kathmandu Valley, scale 1:50,000. Kathmandu: Department of Mines and Geology.
  • Shrestha R, Karanjit S. 2017. Comparative study on the fundamental time period of RC buildings based on codal provision and ambient vibration test – a case study of Kathmandu Valley. J Sci Eng. 4:31–37. doi: 10.3126/jsce.v4i0.22378.
  • Stanko D, Markušić S, Gazdek M, Sanković V, Slukan I, Ivančić I. 2019. Assessment of the seismic site amplification in the city of Ivanec (NW part of Croatia) using the microtremor HVSR method and equivalent-linear site response analysis. Geosciences. 9(7):312. doi: 10.3390/geosciences9070312.
  • Stanko D, Markušić S, Strelec S, Gazdek M. 2017. HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia). Soil Dyn Earthq Eng. 92:666–677. doi: 10.1016/j.soildyn.2016.10.022.
  • Tragni N, Calamita G, Lastilla L, Belloni V, Ravanelli R, Lupo M, Salvia V, Gallipoli MR. 2021. Sharing soil and building geophysical data for seismic characterization of cities using Clara Webgis: A case study of Matera (southern Italy). Appl Sci. 11(9):4254. doi: 10.3390/app11094254.
  • Tuladhar R, Yamazaki F, Warnitchai P, Saita J. 2004. Seismic microzonation of the greater Bangkok area using microtremor observations. Earthq Eng Struct Dyn. 33(2):211–225. doi: 10.1002/eqe.345.
  • Vacca V, Occhipinti G, Mori F, Spina D. 2022. The use of SMAV model for computing fragility curves. Buildings. 12(8):1213. doi: 10.3390/buildings12081213.
  • Wu Y-H, Hung M-C. 2016. Comparison of spatial interpolation techniques using visualization and quantitative assessment. In: Hung M, editor. Application of spatial statistics.Intechopen; pp.17–34 doi: 10.5772/65996.
  • www.theremino. 2023. [accessed 2023 Nov 24]. [Internet]. https://www.theremino.com/en/downloads/geology.
  • Yoshida M, Gautam P. 1988. Magnetostratigraphy of Plio Pleistocene lacustrine deposits in the Kathmandu Valley, Central Nepal. Proc Indian Natl Sci Acad. 54(3):410–417.
  • Yuen KV, Beck JL, Katafygiotis LS. 2002. Probabilistic approach for modal identification using non-stationary noisy response measurements only. Earthq Eng Struct Dyn. 31(4):1007–1023. doi: 10.1002/eqe.135.