348
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geotechnical assessment of seismicity and liquefaction potential at the Banarli landfill in Tekirdag, Turkey

, , &
Article: 2346148 | Received 19 Jul 2023, Accepted 18 Apr 2024, Published online: 29 Apr 2024

References

  • Aksoy ME, Meghraoui M, Vallée M, Çakır Z. 2010. Rupture characteristics of the AD 1912 Murefte (Ganos) earthquake segment of the North Anatolian fault (Western Turkey). Geology. 38(11):991–994. doi: 10.1130/G31447.1.
  • Ambraseys N, Finkel C. 1987. The Saros-Marmara earthquake of 9 August 1912. Earthq Engng Struct Dyn. 15(2):189–211. doi: 10.1002/eqe.4290150204.
  • Ambraseys N, Jackson J. 2000. Seismicity of the Sea of Marmara (Turkey) since 1500. Geophy J Int. 141(3):F1–F6. doi: 10.1046/j.1365-246x.2000.00137.x.
  • Andrus RD, Stokoe KH. 2000. Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng. 126(11):1015–1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015).
  • American Society of Civil Engineers (ASCE). 2013. Minimum Design Loads for Buildings and Other Structures. Reston, VA, USA: ASCE/SEI, p. 7–10.
  • Boulanger RW, Idriss I. 2012. Probabilistic standard penetration test-based liquefaction-triggering procedure. J Geotech Geoenviron Eng. 138(10):1185–1195. doi: 10.1061/(ASCE)GT.1943-5606.0000700.
  • Building Seismic Safety Council (BSSC). 2009. NEHRP recommended seismic provisions for new buildings and other structures, Part 3 Resource papers. Washington, D.C., USA.: FEMA, p. 341–363
  • Çelebi M. 1987. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake. B Seismol Soc Am. 77(4):1147–1167. doi: 10.1785/BSSA0770041147.
  • Çelebi M. 1991. Topographical and geological amplification: case studies and engineering implications. Struct Saf. 10(1-3):199–217. doi: 10.1016/0167-4730(91)90015-2.
  • CESMD. 2021. Centre of engineering strong motion data. https://www.strongmotioncenter.org/cgi-bin/CESMD/search_options.pl. Accessed on 1 Mar 2021.
  • Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder LF, JrKayen RE, Moss RE. 2004. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng. 130(12):1314–1340. doi: 10.1061/(ASCE)1090-0241(2004)130:12(1314).
  • Chen CJ, Juang CH. 2000. Calibration of SPT-and CPT-based liquefaction evaluation methods. In: innovations and applications in geotechnical site characterization 2000, Geo-Denver 2000, Denver, Colorado, 5-8 Aug 2000. Reston, VA, USA: ASCE, p. 49–64. doi: 10.1061/9780784405055.
  • Darendeli MB. 2001. Development of a new family of normalized modulus reduction and material damping curves [Ph.D. dissertation]. University of Texas at Austin.
  • Dobry R, Stokoe KH, Ladd RS, Youd TL. 1981. Liquefaction susceptibility from S-wave velocity. In In-Situ Tests to Evaluate Liquefaction Susceptibility, St. Louis, Missouri: ASCE National Convention, Oct 1981, p. 26–31.
  • Gunasekera R, Ishizawa E, Oscar A, Daniell JE, Pomonis A, Macabuag JLDC, Brand J, Schaefer A, Romero R, Esper S, et al. 2023. Global rapid post-disaster damage estimation (GRADE) Report: Feb 6, 2023, Kahramanmaras Earthquakes—Turkiye Report (English). World Bank Group, Washington, D.C. http://documents.worldbank.org/curated/en/099022723021250141/P1788430aeb62f08009b2302bd4074030fb.
  • Huded PM, Dash SR. 2020. Seismic Wave Propagation in Layered Liquefiable Soils. In Prashant, A., Sachan, A., Desai, C. (Eds.) Advances in Computer Methods and Geomechanics, IACMAG Symposium 2019, Lecture Notes in Civil Engineering 55, p. 417–428. Singapore: Springer. doi: 10.1007/978-981-15-0886-8_34.
  • Idriss IM, Boulanger RW. 2010. SPT-based liquefaction triggering procedures. Rep. UCD/CGM-10-2.
  • Imai T, Tonouchi K. 1982. Correlation of N-value with S-wave velocity and shear modulus. In: The 2nd European Symposium on Penetration Testing, Balkema, Amsterdam, 24–27 May 1982, pp p. 67–72.
  • Iwasaki T. 1986. Soil liquefaction studies in Japan: state-of-the-art. Soil Dyn Earthq Eng. 5(1):2–68. doi: 10.1016/0267-7261(86)90024-2.
  • Iwasaki T, Tatsuoka F, Tokida K, Yasuda S. 1978. A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. In: Proc. of 2nd Int. National Conf. on Microzonation, Sanfrancisco, California, 26 Nov-1 Dec 1978, Vol. 2, p. 885–896.
  • Iwasaki T, Tokida K, Tatsuoka F, Watanabe S, Yasuda S, Sato H. 1982. Microzonation for soil liquefaction potential using simplified methods. In: Proc. of the 3rd Int. Conf. on Microzonation, Seattle, Washington, 28 Jun 1982, Vol. 3(2), p. 1310–1330.
  • Juang CH, Ching J, Luo Z, Ku CS. 2012. New models for probability of liquefaction using standard penetration tests based on an updated database of case histories. Eng Geol. 133-134:85–93. doi: 10.1016/j.enggeo.2012.02.015.
  • Juang CH, Ching J, Luo Z. 2013. Assessing SPT-based probabilistic models for liquefaction potential evaluation: a 10-year update. Georisk. 7(3):137–150. doi: 10.1080/17499518.2013.778117.
  • Kayabali K. 1996. Soil liquefaction evaluation using shear wave velocity. Eng Geol. 44(1-4):121–127. doi: 10.1016/S0013-7952(96)00063-4.
  • Kayen R, Moss RES, Thompson EM, Seed RB, Cetin KO, Kiureghian AD, Tanaka Y, Tokimatsu K. 2013. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng. 139(3):407–419. doi: 10.1061/(ASCE)GT.1943-5606.0000743.
  • Kottke AR, Rathje EM. 2008. Technical Manual for Strata (Report No. 2008/10). Berkeley: Pacific Earthquake Engineering Research Center, University of California.
  • Kramer SL. 1996. Geotechnical earthquake engineering. New Delhi: Pearson Education India.
  • Lee DH, Ku CS, Yuan H. 2004. A study of the liquefaction risk potential at Yuanlin, Taiwan. Eng Geol. 71(1-2):97–117. doi: 10.1016/S0013-7952(03)00128-5.
  • Liao SS, Whitman RV. 1986. Overburden correction factor for SPT in Sand. J Geotech Engrg. 112(3):373–377. doi: 10.1061/(ASCE)0733-9410(1986)112:3(373).
  • Likitlersuang S, Plengsiri P, Mase LZ, Tanapalungkorn W. 2020. Influence of spatial variability of ground on seismic response analysis: a case study of Bangkok subsoils. Bull Eng Geol Environ. 79(1):39–51. doi: 10.1007/s10064-019-01560-9.
  • Mase, Lindung Zalbuin, Agustina, Sintia, Farid, Muchammad, Supriani, Fepy, Tanapalungkorn, Weeradecth, Likitlersuang, Suched, Hardiansyah, 2023. Application of simplified energy concept for liquefaction prediction in Bengkulu City, Indonesia. Geotech Geol Eng, 341: 1999–2021. doi: 10.1007/s10706-023-02388-7.
  • Mase LZ, Likitlersuang S, Tobita T. 2018. Non-linear site response analysis of soil sites in northern Thailand during the Mw 6.8 Tarlay earthquake. EJ. 22(3):291–303. doi: 10.4186/ej.2018.22.3.291.
  • Mase LZ, Likitlersuang S, Tobita T. 2019. Cyclic behaviour and liquefaction resistance of Izumio sands in Osaka, Japan. Mar Geores Geotechnol. 37(7):765–774. doi: 10.1080/1064119X.2018.1485793.
  • Mase LZ, Likitlersuang S, Tobita T. 2022. Verification of liquefaction potential during the strong earthquake at the border of Thailand-Myanmar. J Earthqu Eng. 26(4):2023–2050. doi: 10.1080/13632469.2020.1751346.
  • Maurer BW, Green RA, Cubrinovski M, Bradley BA. 2015. Assessment of CPT-based methods for liquefaction evaluation in a liquefaction potential index framework. Géotechnique. 65(5):328–336. doi: 10.1680/geot.SIP.15.P.007.
  • Moss RE, Seed RB, Kayen RE, Stewart JP, Der Kiureghian A, Cetin KO. 2006. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J Geotech Geoenviron Eng. 132(8):1032–1051. doi: 10.1061/(ASCE)1090-0241(2006)132:8(1032).
  • Muduli PK, Das SK, Bhattacharya S. 2014. CPT-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming. Georisk. 8(1):14–28. doi: 10.1080/17499518.2013.845720.
  • Muduli PK, Das SK. 2014. Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model. Acta Geophys. 62(3):529–543. doi: 10.2478/s11600-013-0181-6.
  • Muduli PK, Das SK. 2015a. First-order reliability method for probabilistic evaluation of liquefaction potential of soil using genetic programming. Int J Geomech. 15(3):04014052. doi: 10.1061/(ASCE)GM.1943-5622.0000377.
  • Muduli PK, Das SK. 2015b. Model uncertainty of SPT-based method for evaluation of seismic soil liquefaction potential using multi-gene genetic programming. Soils Found. 55(2):258–275. doi: 10.1016/j.sandf.2015.02.003.
  • Naddaf M. 2023. Turkey-Syria earthquake: what scientists know. Nature. 614(7948):398–399. doi: 10.1038/d41586-023-00364-y.
  • Nath SK, Srivastava N, Ghatak C, Adhikari MD, Ghosh A, Sinha Ray SP. 2018. Earthquake induced liquefaction hazard, probability and risk assessment in the city of Kolkata, India: its historical perspective and deterministic scenario. J Seismol. 22(1):35–68. doi: 10.1007/s10950-017-9691-z.
  • Okten S, Yazicigil H. 2005. Investigation of safe and sustainable yields for the sandy complex aquifer system in the Ergene River Basin, Thrace Region, Turkey. Turk J Earth Sci. 14(2):209–226. https://journals.tubitak.gov.tr/earth/vol14/iss2/5.
  • Poursartip B, Fathi A, Kallivokas LF. 2017. Seismic wave amplification by topographic features: a parametric study. Soil Dyn Earthq Eng. 92:503–527. doi: 10.1016/j.soildyn.2016.10.031.
  • Qodri MF, Mase LZ, Likitlersuang S. 2021. Non-linear site response analysis of Bangkok subsoils due to earthquakes triggered by Three Pagodas Fault. EJ. 25(1):43–52. doi: 10.4186/ej.2021.25.1.43.
  • RETMC. 2021. Regional Earthquake-Tsunami Monitoring Centre. http://www.koeri.boun.edu.tr/sismo/2/deprem-verileri/sayisal-veriler/veri-indirme-miniseed/. Accessed 1 Mar 2021.
  • Robertson PK, Wride CE. 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J. 35(3):442–459. doi: 10.1139/t98-017.
  • Sadi M. 1912. Movement of the Marmara basin (Marmara Havzasýnýn 26-27 Temmuz Hareket-i Arzi 15 Eylul 1328, Resimli Kitap Mat). Bull Am Astron Soc. 1:45.
  • Schwarz G. 1978. Estimating the dimension of a model. Ann Stat. 6(2):461–464. https://www.jstor.org/stable/2958889.
  • Seed HB, Idriss IM. 1967. Analysis of soil liquefaction: Niigata earthquake. J Soil Mech and Found Div. 93(3):83–108. doi: 10.1061/JSFEAQ.0000981.
  • Seed HB, Idriss IM. 1971. Simplified procedure for evaluating liquefaction potential. J Soil Mech and Found Div. 97(9):1249–1273. doi: 10.1061/JSFEAQ.0001662.
  • Seed HB, Idriss IM. 1981. Evaluation of liquefaction potential of sand deposits based on observations of performance in previous earthquakes. ASCE, Preprint 81:544.
  • Seed HB, Idriss IM, Arango I. 1983. Evaluation of liquefaction potential using field performance data. J Geotech Engrg. 109(3):458–482. doi: 10.1061/(ASCE)0733-9410(1983)109:3(458).
  • Seed HB, Tokimatsu K, Harder LF, Chung RM. 1985. Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Engrg. 111(12):1425–1445. doi: 10.1061/(ASCE)0733-9410(1985)111:12(1425).
  • Shen M, Juang CH, Ku CS, Khoshnevisan S. 2019. Assessing effect of dynamic compaction on liquefaction potential using statistical methods—a case study. Georisk. 13(4):341–348. doi: 10.1080/17499518.2019.1623407.
  • Suleymanpasa Bld. 2020. Geotechnical report for the energy generation power plant building (Mavi Jeoteknik) (Report No. V202006030). Suleymanpasa Belediyesi (Suleymanpasa Municipality), Turkey.
  • Tan O. 2021. A homogeneous earthquake catalogue for Turkey. Nat Hazards Earth Syst Sci. 21(7):2059–2073. doi: 10.5194/nhess-21-2059-2021.
  • Tang XW, Bai X, Hu JL, Qiu JN. 2018. Assessment of liquefaction-induced hazards using Bayesian networks based on standard penetration test data. Nat Hazards Earth Syst Sci. 18(5):1451–1468. doi: 10.5194/nhess-18-1451-2018.
  • TBEC. 2018. Turkish Building Earthquake Code [Turkiye Bina Deprem Yonetmeligi]. Ankara: T.C. Resmi Gazete.
  • Tokimatsu K, Kojima H, Kuwayama S, Abe A, Midorikawa S. 1994. Liquefaction-induced damage to buildings in 1990 Luzon earthquake. J Geotech Engrg. 120(2):290–307. doi: 10.1061/(ASCE)0733-9410(1994)120:2(290).
  • Tokimatsu K, Yoshimi Y. 1983. Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils Found. 23(4):56–74. doi: 10.3208/sandf1972.23.4_56.
  • Toprak S, Holzer TL. 2003. Liquefaction potential index: field assessment. J Geotech Geoenviron Eng. 129(4):315–322. doi: 10.1061/(ASCE)1090-0241(2003)129:4(315).
  • Trifunac MD. 1995. Empirical criteria for liquefaction in sands via standard penetration tests and seismic wave energy. Soil Dyn Earthq Eng. 14(6):419–426. doi: 10.1016/0267-7261(95)00016-N.
  • Youd TL, Idriss IM. 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng. 127(4):297–313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297).
  • Zhang J, Wang T, Xiao S, Gao L. 2021. Chinese code methods for liquefaction potential assessment based on standard penetration test: an extension. Soil Dyn Earthq Eng. 144:106697. doi: 10.1016/j.soildyn.2021.106697.
  • Zhang J, Xiao S, Huang H, Zhou J. 2020. Calibrating a standard penetration test based method for region-specific liquefaction potential assessment. Bull Eng Geol Environ. 79(10):5185–5204. doi: 10.1007/s10064-020-01815-w.
  • Zhou J, Huang S, Zhou T, Armaghani DJ, Qiu Y. 2022. Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential. Artif Intell Rev. 55(7):5673–5705. doi: 10.1007/s10462-022-10140-5.
  • Zhou YG, Chen YM. 2007. Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. J Geotech Geoenviron Eng. 133(8):959–972. doi: 10.1061/(ASCE)1090-0241(2007)133:8(959).