535
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An interpretable model for landslide susceptibility assessment based on Optuna hyperparameter optimization and Random Forest

, , , , , , , & show all
Article: 2347421 | Received 04 Feb 2024, Accepted 19 Apr 2024, Published online: 11 May 2024

References

  • Abdollahi A, Pradhan B. 2023. Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model. Sci Total Environ. 879:163004. doi: 10.1016/j.scitotenv.2023.163004.
  • Akiba T, Sano S, Yanase T, Ohta T, Koyama M. 2019. Optuna: a next-generation hyperparameter optimization framework. KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data; p. 2623–2631. doi: 10.1145/3292500.3330701.
  • Berhane G, Kebede M, Alfarrah N. 2021. Landslide susceptibility mapping and rock slope stability assessment using frequency ratio and kinematic analysis in the mountains of Mgulat area, Northern Ethiopia. Bull Eng Geol Environ. 80(1):285–301. doi: 10.1007/s10064-020-01905-9.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32. doi: 10.1023/A:1010933404324.
  • Carrara A, Crosta G, Frattini P. 2008. Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology. 94(3–4):353–378. doi: 10.1016/j.geomorph.2006.10.033.
  • Chen C, Fan L. 2023a. An attribution deep learning interpretation model for landslide susceptibility mapping in the Three Gorges Reservoir area. IEEE Trans Geosci Remote Sensing. 61:1–15. doi: 10.1109/TGRS.2023.3323668.
  • Chen C, Fan L. 2023b. Selection of contributing factors for predicting landslide susceptibility using machine learning and deep learning models. Stoch Environ Res Risk Assess.1–26. doi: 10.1007/s00477-023-02556-4.
  • Chen Z, Zhou H, Ye F, Liu B, Fu W. 2022. Landslide susceptibility mapping along the Anninghe fault zone in China using SVM and ACO-PSO-SVM models. Lithosphere. 2022(1):5216125. doi: 10.2113/2022/5216125.
  • Chu H-J, Lin Y-P, Huang Y-L, Wang Y-C. 2009. Detecting the land-cover changes induced by large-physical disturbances using landscape metrics, spatial sampling, simulation and spatial analysis. Sensors (Basel). 9(9):6670–6700. doi: 10.3390/s90906670.
  • Dikshit A, Pradhan B. 2021. Interpretable and explainable AI (XAI) model for spatial drought prediction. Sci Total Environ. 801:149797. doi: 10.1016/j.scitotenv.2021.149797.
  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recognit Lett. 27(8):861–874. doi: 10.1016/j.patrec.2005.10.010.
  • Froude MJ, Petley DN. 2018. Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci. 18(8):2161–2181. doi: 10.5194/nhess-18-2161-2018.
  • Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T. 2005. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng Geol. 81(1):65–83. doi: 10.1016/j.enggeo.2005.07.011.
  • Guliyev H, Mustafayev E. 2022. Predicting the changes in the WTI crude oil price dynamics using machine learning models. Resour Policy. 77:102664. doi: 10.1016/j.resourpol.2022.102664.
  • He F, Tan S, Liu H. 2022. Mechanism of rainfall induced landslides in Yunnan Province using multi-scale spatiotemporal analysis and remote sensing interpretation. Microprocess Microsyst. 90:104502. doi: 10.1016/j.micpro.2022.104502.
  • He Q, Wang M, Liu K. 2021. Rapidly assessing earthquake-induced landslide susceptibility on a global scale using random forest. Geomorphology. 391:107889. doi: 10.1016/j.geomorph.2021.107889.
  • Hong H, Miao Y, Liu J, Zhu AX. 2019. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena. 176:45–64. doi: 10.1016/j.catena.2018.12.035.
  • Hong H, Tsangaratos P, Ilia I, Chen W, Xu C. 2017. Comparing the performance of a logistic regression and a random forest model in landslide susceptibility assessments. The Case of Wuyaun Area, China. In: Mikos M, Tiwari B, Yin Y, and Sassa K, editors. Advancing culture of living with landslides. Cham: Springer International Publishing; p. 1043–1050. doi: 10.1007/978-3-319-53498-5_118.
  • Hong H, Tsangaratos P, Ilia I, Liu J, Zhu AX, Chen W. 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci Total Environ. 625:575–588. doi: 10.1016/j.scitotenv.2017.12.256.
  • Ilia I, Tsangaratos P. 2016. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides. 13(2):379–397. doi: 10.1007/s10346-015-0576-3.
  • Imani M, Arabnia HR. 2023. Hyperparameter optimization and combined data sampling techniques in machine learning for customer churn prediction: a comparative analysis. Technologies. 11(6):167. doi: 10.3390/technologies11060167.
  • Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR. 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards. 83(2):947–987. doi: 10.1007/s11069-016-2357-2.
  • Kim J-C, Lee S, Jung H-S, Lee S. 2018. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int. 33(9):1000–1015. doi: 10.1080/10106049.2017.1323964.
  • Li L, Lan H, Guo C, Zhang Y, Li Q, Wu Y. 2016. A modified frequency ratio method for landslide susceptibility assessment. Landslides. 14(2):727–741. doi: 10.1007/s10346-016-0771-x.
  • Li XZ, Kong JM. 2014. Application of GA–SVM method with parameter optimization for landslide development prediction. Nat Hazards Earth Syst Sci. 14(3):525–533. doi: 10.5194/nhess-14-525-2014.
  • Li Y-G, He D, Hu J-M, Cao J. 2015. Variability of extreme precipitation over Yunnan Province, China 1960–2012. Intl J Climatol. 35(2):245–258. doi: 10.1002/joc.3977.
  • Liao M, Wen H, Yang L. 2022. Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning: a case of Wushan and Wuxi counties, China. Catena. 217:106428. doi: 10.1016/j.catena.2022.106428.
  • Lin N, Zhang D, Feng S, Ding K, Tan L, Wang B, Chen T, Li W, Dai X, Pan J, et al. 2023. Rapid landslide extraction from high-resolution remote sensing images using SHAP-OPT-XGBoost. Remote Sens. 15(15):3901. doi: 10.3390/rs15153901.
  • Liu J, Li S, Chen T. 2018. Landslide susceptibility assesment based on optimized random forest model. Geomatics Inf Sci Wuhan Univ. 43(7):1085–1091. doi: 10.13203/j.whugis20160515.
  • Liu M, Xu B, Li Z, Mao W, Zhu Y, Hou J, Liu W. 2023. Landslide susceptibility zoning in Yunnan Province based on SBAS-InSAR technology and a random forest model. Remote Sens. 15(11):2864. doi: 10.3390/rs15112864.
  • Liu Z, Ma J, Xia D, Jiang S, Ren Z, Tan C, Lei D, Guo H. 2023. Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR). Nat Hazards. 120(4):3165–3188. doi: 10.1007/s11069-023-06322-1.
  • Long Y, Li W, Huang R, Xu Q, Yu B, Liu G. 2023. A comparative study of supervised classification methods for investigating landslide evolution in the Mianyuan River Basin, China. J Earth Sci. 34(2):316–329. doi: 10.1007/s12583-021-1525-9.
  • Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee S-I. 2020. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2(1):56–67. doi: 10.1038/s42256-019-0138-9.
  • Lundberg SM, Lee S-I. 2017. A unified approach to interpreting model predictions. 31st Annual Conference on Neural Information Processing Systems (NIPS); Dec 4–9; Long Beach, CA; p. 30.
  • Lundberg SM, Erion GG, Lee S-I. 2019. Consistent individualized feature attribution for tree ensembles. arXiv:1802.03888v3. doi: 10.48550/arXiv.1802.03888.
  • Ma J, Lei D, Ren Z, Tan C, Xia D, Guo H. 2023. Automated machine learning-based landslide susceptibility mapping for the Three Gorges Reservoir area, China. Math Geosci. 55:1–36. doi: 10.1007/s11004-023-10116-3.
  • Mojaddadi H, Pradhan B, Nampak H, Ahmad N, bin Ghazali AH. 2017. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics Nat Hazards Risk. 8(2):1080–1102. doi: 10.1080/19475705.2017.1294113.
  • Prodhan FA, Zhang J, Hasan SS, Sharma TPP, Mohana HP. 2022. A review of machine learning methods for drought hazard monitoring and forecasting: current research trends, challenges, and future research directions. Environ Model Softw. 149:105327. doi: 10.1016/j.envsoft.2022.105327.
  • Qiu H, Cui P, Regmi AD, Hu S, Zhang Y, He Y. 2018. Landslide distribution and size versus relative relief (Shaanxi Province, China). Bull Eng Geol Environ. 77(4):1331–1342. doi: 10.1007/s10064-017-1121-5.
  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth Sci Rev. 180:60–91. doi: 10.1016/j.earscirev.2018.03.001.
  • Ribeiro da Silva C, Luo X, Lin F, Zhu S, Yu M, Zhang Z, Meng L, Peng J. 2019. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors. PLoS One. 14(4):e0215134. doi: 10.1371/journal.pone.0215134.
  • Rodríguez E, Morris CS, Belz JE. 2006. A global assessment of the SRTM performance. Photogramm Eng Remote Sensing. 72(3):249–260. doi: 10.14358/PERS.72.3.249.
  • Saha S, Arabameri A, Saha A, Blaschke T, Ngo PTT, Nhu VH, Band SS. 2021. Prediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation method. Sci Total Environ. 764:142928. doi: 10.1016/j.scitotenv.2020.142928.
  • Sayre R, Dangermond J, Frye C, Vaughan R, Aniello P, Breyer S, Cribbs D, Hopkins D, Naumann R, Derrenbacher B. 2014. A new map of global ecological land units—an ecophysiographic stratification approach. Washington, DC: Association of American Geographers. doi: 10.13140/2.1.2167.8887.
  • Schmidt KM, Montgomery DR. 1995. Limits to relief. Science. 270(5236):617–620. doi: 10.1126/science.270.5236.617.
  • Shirani K, Pasandi M, Arabameri A. 2018. Landslide susceptibility assessment by Dempster-Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran. Nat Hazards. 93(3):1379–1418. doi: 10.1007/s11069-018-3356-2.
  • Shu H, Hürlimann M, Molowny-Horas R, González M, Pinyol J, Abancó C, Ma J. 2019. Relation between land cover and landslide susceptibility in Val d‘Aran, Pyrenees (Spain): historical aspects, present situation and forward prediction. Sci Total Environ. 693:133557. doi: 10.1016/j.scitotenv.2019.07.363.
  • Song Y, Li Y, Zou Y, Wang R, Liang Y, Xu S, He Y, Yu X, Wu W. 2024. Synergizing multiple machine learning techniques and remote sensing for advanced landslide susceptibility assessment: a case study in the Three Gorges Reservoir Area. Environ Earth Sci. 83(8):227. doi: 10.1007/s12665-024-11521-5.
  • Song Y, Wang J, Ge Y, Xu C. 2020. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data. GIsci Remote Sens. 57(5):593–610. doi: 10.1080/15481603.2020.1760434.
  • Stumpf A, Kerle N. 2011. Object-oriented mapping of landslides using Random Forests. Remote Sens Environ. 115(10):2564–2577. doi: 10.1016/j.rse.2011.05.013.
  • Sun D, Shi S, Wen H, Xu J, Zhou X, Wu J. 2021. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping. Geomorphology. 379:107623. doi: 10.1016/j.geomorph.2021.107623.
  • Sun D, Wen H, Wang D, Xu J. 2020. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology. 362:107201. doi: 10.1016/j.geomorph.2020.107201.
  • Sun Z, Wang D, Gu X, Abdel-Aty M, Xing Y, Wang J, Lu H, Chen Y. 2023. A hybrid approach of random forest and random parameters logit model of injury severity modeling of vulnerable road users involved crashes. Accid Anal Prev. 192:107235. doi: 10.1016/j.aap.2023.107235.
  • Tang X, Hong H, Shu Y, Tang H, Li J, Liu W. 2019. Urban waterlogging susceptibility assessment based on a PSO-SVM method using a novel repeatedly random sampling idea to select negative samples. J Hydrol. 576:583–595. doi: 10.1016/j.jhydrol.2019.06.058.
  • Tatem AJ. 2017. WorldPop, open data for spatial demography. Sci Data. 4(1):170004. doi: 10.1038/sdata.2017.4.
  • Trigila A, Iadanza C, Esposito C, Scarascia-Mugnozza G. 2015. Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology. 249:119–136. doi: 10.1016/j.geomorph.2015.06.001.
  • Van den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L. 2006. Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology. 76(3-4):392–410. doi: 10.1016/j.geomorph.2005.12.003.
  • Wang J-F, Li X-H, Christakos G, Liao Y-L, Zhang T, Gu X, Zheng X-Y. 2010. Geographical detectors-based health risk assessment and its application in the Neural Tube Defects Study of the Heshun Region, China. Int J Geogr Inf Sci. 24(1):107–127. doi: 10.1080/13658810802443457.
  • Wang J-l, Yu Y-h 2021. Comprehensive drought monitoring in Yunnan Province, China using multisource remote sensing data. J Mt Sci. 18(6):1537–1549. doi: 10.1007/s11629-020-6333-7.
  • Wang Q, Li W, Wu Y, Pei Y, Xie P. 2016. Application of statistical index and index of entropy methods to landslide susceptibility assessment in Gongliu (Xinjiang, China). Environ Earth Sci. 75(7):599. doi: 10.1007/s12665-016-5400-4.
  • Wang S, Zhuang J, Zheng J, Fan H, Kong J, Zhan J. 2021. Application of Bayesian hyperparameter optimized Random Forest and XGBoost model for landslide susceptibility mapping. Front Earth Sci. 9:712240. doi: 10.3389/feart.2021.712240.
  • Wang Y, Sun D, Wen H, Zhang H, Zhang F. 2020. Comparison of random forest model and frequency ratio model for landslide susceptibility mapping (LSM) in Yunyang County (Chongqing, China). Int J Environ Res Public Health. 17(12):4206. doi: 10.3390/ijerph17124206.
  • Wei A, Li D, Zhou Y, Deng Q, Yan L. 2021. A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model. Nat Hazards. 105(1):405–430. doi: 10.1007/s11069-020-04317-w.
  • de Winter JCF, Gosling SD, Potter J. 2016. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: a tutorial using simulations and empirical data. Psychol Methods. 21(3):273–290. doi: 10.1037/met0000079.
  • Wu X, Song Y, Chen W, Kang G, Qu R, Wang Z, Wang J, Lv P, Chen H. 2023. Analysis of geological hazard susceptibility of landslides in Muli County based on random forest algorithm. Sustainability. 15(5):4328. doi: 10.3390/su15054328.
  • Wu Y, Li W, Wang Q, Liu Q, Yang D, Xing M, Pei Y, Yan S. 2016. Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arab J Geosci. 9(2):84. doi: 10.1007/s12517-015-2112-0.
  • Xiao X, Ming W, Luo X, Yang L, Li M, Yang P, Ji X, Li Y. 2024. Leveraging multisource data for accurate agricultural drought monitoring: a hybrid deep learning model. Agric Water Manag. 293:108692. doi: 10.1016/j.agwat.2024.108692.
  • Xie W, Nie W, Saffari P, Robledo LF, Descote P-Y, Jian W. 2021. Landslide hazard assessment based on Bayesian optimization-support vector machine in Nanping City, China. Nat Hazards. 109(1):931–948. doi: 10.1007/s11069-021-04862-y.
  • Xie Z, Chen G, Meng X, Zhang Y, Qiao L, Tan L. 2017. A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin, China. Environ Earth Sci. 76(8):313. doi: 10.1007/s12665-017-6640-7.
  • Xu C, Xu X, Yao X, Dai F. 2013. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides. 11(3):441–461. doi: 10.1007/s10346-013-0404-6.
  • Youssef K, Shao K, Moon S, Bouchard LS. 2023. Landslide susceptibility modeling by interpretable neural network. Commun Earth Environ. 4(1):162. doi: 10.1038/s43247-023-00806-5.
  • Zhang J, Ma X, Zhang J, Sun D, Zhou X, Mi C, Wen H. 2023. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J Environ Manage. 332:117357. doi: 10.1016/j.jenvman.2023.117357.
  • Zhang XB, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW. 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Change. 2(6):851–870. doi: 10.1002/wcc.147.
  • Zhang Y, Lan H, Li L, Wu Y, Chen J, Tian N. 2020. Optimizing the frequency ratio method for landslide susceptibility assessment: a case study of the Caiyuan Basin in the southeast mountainous area of China. J Mt Sci. 17(2):340–357. doi: 10.1007/s11629-019-5702-6.
  • Zhao Y, Wang R, Jiang Y, Liu H, Wei Z. 2019. GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China. Eng Geol. 259:105147. doi: 10.1016/j.enggeo.2019.105147.
  • Zhou X, Wen H, Li Z, Zhang H, Zhang W. 2022. An interpretable model for the susceptibility of rainfall-induced shallow landslides based on SHAP and XGBoost. Geocarto Int. 37(26):13419–13450. doi: 10.1080/10106049.2022.2076928.