184
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A side-sampling based Linformer model for landslide susceptibility assessment: a case study of the railways in China

, , , , , & show all
Article: 2354507 | Received 07 Mar 2024, Accepted 07 May 2024, Published online: 02 Jun 2024

References

  • Abedini M, Ghasemian B, Shirzadi A, Shahabi H, Chapi K, Pham BT, Bin Ahmad B, Tien Bui D. 2019. A novel hybrid approach of Bayesian logistic regression and its ensembles for landslide susceptibility assessment. Geocarto Int. 34(13):1427–1457. doi: 10.1080/10106049.2018.1499820.
  • Ado M, Amitab K, Maji AK, Jasińska E, Gono R, Leonowicz Z, Jasiński M. 2022. Landslide susceptibility mapping using machine learning: a literature survey. Remote Sens (Basel). 14(13):3029. doi: 10.3390/rs14133029.
  • Agrawal K, Baweja Y, Dwivedi D, Saha R, Prasad P, Agrawal S, Kapoor S, Chaturvedi P, Mali N, Kala VU, et al. 2017. A comparison of class imbalance techniques for real-world landslide predictions. In: Proceedings - 2017 International Conference on Machine Learning and Data Science, MLDS 2017. Vol. 2018-January. doi: 10.1109/MLDS.2017.21.
  • Agrawal N, Dixit J. 2022. Assessment of landslide susceptibility for Meghalaya (India) using bivariate (frequency ratio and Shannon entropy) and multi-criteria decision analysis (AHP and fuzzy-AHP) models. All Earth. 34(1):179–201. doi: 10.1080/27669645.2022.2101256.
  • Akgun A, Dag S, Bulut F. 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol. 54(6):1127–1143. doi: 10.1007/s00254-007-0882-8.
  • Akinci H, Zeybek M. 2021. Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey. Nat Hazards. 108(2):1515–1543. doi: 10.1007/s11069-021-04743-4.
  • Al-Najjar HAH, Pradhan B, Sarkar R, Beydoun G, Alamri A. 2021. A new integrated approach for landslide data balancing and spatial prediction based on generative adversarial networks (GAN). Remote Sens (Basel). 13(19):4011. doi: 10.3390/rs13194011.
  • Avand M, Janizadeh S, Tien Bui D, Pham VH, Ngo PTT, Nhu VH. 2020. A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. Int J Digit Earth. 13(12):1408–1429. doi: 10.1080/17538947.2020.1718785.
  • Ayalew L, Yamagishi H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 65(1-2):15–31. doi: 10.1016/j.geomorph.2004.06.010.
  • Azarafza M, Azarafza M, Akgün H, Atkinson PM, Derakhshani R. 2021. Deep learning-based landslide susceptibility mapping. Sci Rep. 11(1). doi: 10.1038/s41598-021-03585-1.
  • Baeza C, Lantada N, Amorim S. 2016. Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ Earth Sci. 75(19) doi: 10.1007/s12665-016-6124-1.
  • Bahrami Y, Hassani H, Maghsoudi A. 2021. Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province, Iran. GeoJournal. 86(4):1797–1816. doi: 10.1007/s10708-020-10162-y.
  • Bao S, Liu J, Wang L, Zhao X. 2022. Application of transformer models to landslide susceptibility mapping. Sensors (Basel). 22(23):9104. doi: 10.3390/s22239104.
  • Bhagya SB, Sumi AS, Balaji S, Danumah JH, Costache R, Rajaneesh A, Gokul A, Chandrasenan CP, Quevedo RP, Johny A, et al. 2023. Landslide susceptibility assessment of a part of the Western Ghats (India) employing the AHP and F-AHP models and comparison with existing susceptibility maps. Land (Basel). 12(2):468. doi: 10.3390/land12020468.
  • Bourenane H, Bouhadad Y, Guettouche MS, Braham M. 2015. GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ. 74(2):337–355. doi: 10.1007/s10064-014-0616-6.
  • Brenning A. 2005. Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci. 5(6):853–862. doi: 10.5194/nhess-5-853-2005.
  • Broeckx J, Vanmaercke M, Duchateau R, Poesen J. 2018. A data-based landslide susceptibility map of Africa. Earth Sci Rev. 185:102–121. doi: 10.1016/j.earscirev.2018.05.002.
  • Cao Y, Jia H, Xiong J, Cheng W, Li K, Pang Q, Yong Z. 2020. Flash flood susceptibility assessment based on geodetector, certainty factor, and logistic regression analyses in Fujian province, China. IJGI. 9(12):748. doi: 10.3390/ijgi9120748.
  • Chang Z, Huang F, Huang J, Jiang SH, Liu Y, Meena SR, Catani F. 2023. An updating of landslide susceptibility prediction from the perspective of space and time. Geosci Front. 14(5):101619. doi: 10.1016/j.gsf.2023.101619.
  • Chen C, Fan L. 2023. Selection of contributing factors for predicting landslide susceptibility using machine learning and deep learning models. Stoch Environ Res Risk Assess. doi: 10.1007/s00477-023-02556-4.
  • Chi F, Han H. 2023. The impact of high-speed rail on economic development: a county-level analysis. Land (Basel). 12(4):874. doi: 10.3390/land12040874.
  • Dang VH, Hoang ND, Nguyen LMD, Bui DT, Samui P. 2020. A novel GIS-Based random forest machine algorithm for the spatial prediction of shallow landslide susceptibility. Forests. 11(1):118. doi: 10.3390/f11010118.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen CW, Han Z, Pham BT. 2020. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides. 17(3):641–658. doi: 10.1007/s10346-019-01286-5.
  • Erener A, Sivas AA, Selcuk-Kestel AS, Düzgün HS. 2017. Analysis of training sample selection strategies for regression-based quantitative landslide susceptibility mapping methods. Comput Geosci. 104:62–74. doi: 10.1016/j.cageo.2017.03.022.
  • Feizizadeh B, Jankowski P, Blaschke T. 2014. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Comput Geosci. 64:81–95. doi: 10.1016/j.cageo.2013.11.009.
  • Florinsky IV. 1998. Accuracy of local topographic variables derived from digital elevation models. Intern J Geograph Inform Sci. 12(1):47–62. doi: 10.1080/136588198242003.
  • Fu B, Li Y, Han Z, Fang Z, Chen N, Hu G, Wang W. 2023. RIPF-Unet for regional landslides detection: a novel deep learning model boosted by reversed image pyramid features. Nat Hazards. 119(1):701–719. doi: 10.1007/s11069-023-06145-0.
  • Gao H, Fam PS, Tay LT, Low HC. 2020. Three oversampling methods applied in a comparative landslide spatial research in Penang Island, Malaysia. SN Appl Sci. 2(9) doi: 10.1007/s42452-020-03307-8.
  • Ghorbanzadeh O, Blaschke T. 2019. Optimizing sample patches selection of CNN to improve the MIOU on landslide detection. In: GISTAM 2019 - Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management. doi: 10.5220/0007675300330040.
  • Ghorbanzadeh O, Xu Y, Ghamisi P, Kopp M, Kreil D. 2022. Landslide4Sense: reference Benchmark Data and Deep Learning Models for Landslide Detection. IEEE Trans Geosci Remote Sensing. 60:1–17. doi: 10.1109/TGRS.2022.3215209.
  • Ghorbanzadeh O, Xu Y, Zhao H, Wang J, Zhong Y, Zhao D, Zang Q, Wang S, Zhang F, Shi Y, et al. 2022. The outcome of the 2022 Landslide4Sense competition: advanced landslide detection from multisource satellite imagery. IEEE J Sel Top Appl Earth Observations Remote Sensing. 15:9927–9942. doi: 10.1109/JSTARS.2022.3220845.
  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M. 2006. Estimating the quality of landslide susceptibility models. Geomorphology. 81(1-2):166–184. doi: 10.1016/j.geomorph.2006.04.007.
  • Habumugisha JM, Chen N, Rahman M, Islam MM, Ahmad H, Elbeltagi A, Sharma G, Liza SN, Dewan A. 2022. Landslide susceptibility mapping with deep learning algorithms. Sustainability (Switzerland.). 14(3):1734. doi: 10.3390/su14031734.
  • Hamedi H, Alesheikh AA, Panahi M, Lee S. 2022. Landslide susceptibility mapping using deep learning models in Ardabil province, Iran. Stoch Environ Res Risk Assess. 36(12):4287–4310. doi: 10.1007/s00477-022-02263-6.
  • He K, Gan C, Li Z, Rekik I, Yin Z, Ji W, Gao Y, Wang Q, Zhang J, Shen D. 2023. Transformers in medical image analysis. Intel Med. 3(1):59–78. doi: 10.1016/j.imed.2022.07.002.
  • Huang F, Chen J, Liu W, Huang J, Hong H, Chen W. 2022. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology. 408:108236. doi: 10.1016/j.geomorph.2022.108236.
  • Huang W, Ding M, Li Z, Yu J, Ge D, Liu Q, Yang J. 2023. Landslide susceptibility mapping and dynamic response along the Sichuan-Tibet transportation corridor using deep learning algorithms. Catena (Amst). 222:106866. doi: 10.1016/j.catena.2022.106866.
  • Huang Y, Zhao L. 2018. Review on landslide susceptibility mapping using support vector machines. Catena (Amst). 165:520–529. doi: 10.1016/j.catena.2018.03.003.
  • Jiang N, Li Y, Han Z, Li J, Fu B, Yang J. 2023. A dataset-enhanced Linformer model for geo-hazards susceptibility assessment: a case study of the railway in Southwest China. Environ Earth Sci. 82(17) doi: 10.1007/s12665-023-11080-1.
  • Kalantar B, Pradhan B, Amir Naghibi S, Motevalli A, Mansor S. 2018. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics Nat Hazards Risk. 9(1):49–69. doi: 10.1080/19475705.2017.1407368.
  • Kalyan KS, Rajasekharan A, Sangeetha S. 2022. AMMU: a survey of transformer-based biomedical pretrained language models. J Biomed Inform. 126:103982. doi: 10.1016/j.jbi.2021.103982.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides. 11(3):425–439. doi: 10.1007/s10346-013-0391-7.
  • Kavzoglu T, Teke A. 2022. Predictive performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBoost) and Natural Gradient Boosting (NGBoost). Arab J Sci Eng. 47(6):7367–7385. doi: 10.1007/s13369-022-06560-8.
  • Kim HI, Kim BH. 2020. Flood hazard rating prediction for urban areas using random forest and LSTM. KSCE J Civ Eng. 24(12):3884–3896. doi: 10.1007/s12205-020-0951-z.
  • King G, Zeng L. 2003. Logistic regression in rare events data. J Stat Soft. 8(2) doi: 10.18637/jss.v008.i02.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature. 521(7553):436–444. doi: 10.1038/nature14539.
  • Li Y, Yang J, Han Z, Li J, Wang W, Chen N, Hu G, Huang J. 2023. An ensemble deep-learning framework for landslide susceptibility assessment using multiple blocks: a case study of Wenchuan area, China. Geomatics Nat Hazards Risk. 14(1) doi: 10.1080/19475705.2023.2221771.
  • Li Z, Shi A, Li X, Dou J, Li S, Chen T, Chen T. 2024. Deep learning-based landslide recognition incorporating deformation characteristics. Remote Sens (Basel). 16(6):992. doi: 10.3390/rs16060992.
  • Lin Q, Lima P, Steger S, Glade T, Jiang T, Zhang J, Liu T, Wang Y. 2021. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geosci Front. 12(6):101248. doi: 10.1016/j.gsf.2021.101248.
  • Liu M, Liu J, Xu S, Zhou T, Ma Y, Zhang F, Konečný M. 2021. Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: a case study from Shaanxi Province. Int J Image Data Fusion. 12(4):349–366. doi: 10.1080/19479832.2021.1961316.
  • Liu R, Li L, Pirasteh S, Lai Z, Yang X, Shahabi H. 2021. The performance quality of LR, SVM, and RF for earthquake-induced landslides susceptibility mapping incorporating remote sensing imagery. Arab J Geosci. 14(4) doi: 10.1007/s12517-021-06573-x.
  • Liu S, Wang L, Zhang W, He Y, Pijush S. 2023. A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol J. 58(6):2283–2301. doi: 10.1002/gj.4666.
  • Lu W, Hu Y, Shao W, Wang H, Zhang Z, Wang M. 2024. A multiscale feature fusion enhanced CNN with the multiscale channel attention mechanism for efficient landslide detection (MS2LandsNet) using medium-resolution remote sensing data. Int J Digit Earth. 17(1) doi: 10.1080/17538947.2023.2300731.
  • Lv Z, Zhang P, Benediktsson JA. 2017. Automatic object-oriented, spectral-spatial feature extraction driven by Tobler’s first law of geography for very high resolution aerial imagery classification. Remote Sens (Basel). 9(3):285. doi: 10.3390/rs9030285.
  • Markham K, Frazier AE, Singh KK, Madden M. 2023. A review of methods for scaling remotely sensed data for spatial pattern analysis. Landsc Ecol. 38(3):619–635. doi: 10.1007/s10980-022-01449-1.
  • Merghadi A, Abderrahmane B, Tien Bui D. 2018. Landslide susceptibility assessment at Mila basin (Algeria): a comparative assessment of prediction capability of advanced machine learning methods. IJGI. 7(7):268. doi: 10.3390/ijgi7070268.
  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B. 2020. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev. 207:103225. doi: 10.1016/j.earscirev.2020.103225.
  • Moore ID, Grayson RB, Ladson AR. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process. 5(1). doi: 10.1002/hyp.3360050103.
  • Nam K, Wang F. 2019. The performance of using an autoencoder for prediction and susceptibility assessment of landslides: a case study on landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake in Japan. Geoenviron Disasters. 6(1). doi: 10.1186/s40677-019-0137-5.
  • Nami MH, Jaafari A, Fallah M, Nabiuni S. 2018. Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. Int J Environ Sci Technol. 15(2):373–384. doi: 10.1007/s13762-017-1371-6.
  • Nefeslioglu HA, Gokceoglu C, Sonmez H. 2008. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol. 97(3-4):171–191. doi: 10.1016/j.enggeo.2008.01.004.
  • Nikoobakht S, Azarafza M, Akgün H, Derakhshani R. 2022. Landslide susceptibility assessment by using convolutional neural network. Applied Sciences (Switzerland). 12(12):5992. doi: 10.3390/app12125992.
  • Peng J, Cui P, Zhuang J. 2020. Challenges to engineering geology of Sichuan-Tibet railway. Yanshilixue Yu Gongcheng Xuebao/Chinese J Rock Mech Engng. 39(12). doi: 10.13722/j.cnki.jrme.2020.0446.
  • Pham BT, Bui DT, Indra P, Dholakia MB. 2015. Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS–based statistical approach of frequency ratio method. Int J Eng Res Technol. 4(11):338–344.
  • Pham BT, Prakash I, Chen W, Ly HB, Ho LS, Omidvar E, Tran VP, Bui DT. 2019. A novel intelligence approach of a sequential minimal optimization-based support vector machine for landslide susceptibility mapping. Sustainability (Switzerland). 11(22, 6323). doi: 10.3390/su11226323.
  • Pourghasemi HR, Kornejady A, Kerle N, Shabani F. 2020. Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping. Catena (Amst). 187:104364. doi: 10.1016/j.catena.2019.104364.
  • Qiao B, Zhu L, Yang R. 2019. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens Environ. 222:232–243. doi: 10.1016/j.rse.2018.12.037.
  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth Sci Rev. 180:60–91. doi: 10.1016/j.earscirev.2018.03.001.
  • Riitters K. 2019. Pattern metrics for a transdisciplinary landscape ecology. Landscape Ecol. 34(9):2057–2063. doi: 10.1007/s10980-018-0755-4.
  • Rong G, Li K, Han L, Alu S, Zhang J, Zhang Y. 2020. Hazard mapping of the rainfall-landslides disaster chain based on geodetector and Bayesian network models in Shuicheng County, China. Water (Switzerland). 12(9):2572. doi: 10.3390/w12092572.
  • Saha S, Saha A, Hembram TK, Kundu B, Sarkar R. 2022. Novel ensemble of deep learning neural network and support vector machine for landslide susceptibility mapping in Tehri region, Garhwal Himalaya. Geocarto Int. 37(27):17018–17043. doi: 10.1080/10106049.2022.2120638.
  • Sahin EK, Colkesen I, Acmali SS, Akgun A, Aydinoglu AC. 2020. Developing comprehensive geocomputation tools for landslide susceptibility mapping: LSM tool pack. Comput Geosci. 144:104592. doi: 10.1016/j.cageo.2020.104592.
  • Sameen MI, Pradhan B, Lee S. 2020. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. Catena (Amst). 186:104249. doi: 10.1016/j.catena.2019.104249.
  • Satarzadeh E,Sarraf A,Hajikandi H,Sadeghian MS. 2022. Flood hazard mapping in western Iran: assessment of deep learning vis-à-vis machine learning models. Nat Hazards. 111:1355–1373.
  • Shao X, Ma S, Xu C, Zhou Q. 2020. Effects of sampling intensity and non-slide/slide sample ratio on the occurrence probability of coseismic landslides. Geomorphology. 363:107222. doi: 10.1016/j.geomorph.2020.107222.
  • Shao X, Xu C. 2022. Earthquake-induced landslides susceptibility assessment: A review of the state-of-the-art. Nat Hazards Res. 2(3):172–182. doi: 10.1016/j.nhres.2022.03.002.
  • Shijin W, Yanqiang WEI, Chunhua NIU, Zahng Y. 2021. Integrated risk management of multi-hazard natural disasters on the Tibetan Plateau. Glacial Permafrost. 43(06):1848–1860.
  • Sonker, Irjesh, Tripathi, Jayant Nath, Swarnim, Swarnim. 2022. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio method in Sikkim Himalaya. Quaternary Sci Adv., 100067. 8. doi: 10.1016/j.qsa.2022.100067.
  • Tobler WR. 1970. A computer movie simulating urban growth in the Detroit region. Econ Geogr. 46:234. doi: 10.2307/143141.
  • Tsangaratos P, Ilia I. 2016. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size. Catena (Amst). 145:164–179. doi: 10.1016/j.catena.2016.06.004.
  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. 2017. Attention is all you need. In: Adv Neural Inf Process Syst. 2017-December[place unknown].
  • Wang S, Li BZ, Khabsa M, Fang H, Ma H. 2020. Linformer: self-attention with linear complexity. arXiv preprint arXiv:200604768.
  • Wang S, Zhuang J, Mu J, Zheng J, Zhan J, Wang J, Fu Y. 2022. Evaluation of landslide susceptibility of the Ya’an–Linzhi section of the Sichuan–Tibet Railway based on deep learning. Environ Earth Sci. 81(9) doi: 10.1007/s12665-022-10375-z.
  • Wang WD, Li J, Han Z. 2020. Comprehensive assessment of geological hazard safety along railway engineering using a novel method: a case study of the Sichuan-Tibet railway, China. Geomatics Nat Hazards Risk. 11(1):1–21. doi: 10.1080/19475705.2019.1699606.
  • Wang Y, Wu X, Chen Z, Ren F, Feng L, Du Q. 2019. Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using smote for Lishui city in Zhejiang province, China. Int J Environ Res Public Health. 16(3) doi: 10.3390/ijerph16030368.
  • Wang Z, Chen T, Zhu D, Jia K, Plaza A. 2023. RSEIFE: A new remote sensing ecological index for simulating the land surface eco-environment. J Environ Manage. 326(Pt A):116851. doi: 10.1016/j.jenvman.2022.116851.
  • Weiss GM, Provost F. 2003. Learning when training data are costly: the effect of class distribution on tree induction. Jair. 19:315–354. doi: 10.1613/jair.1199.
  • Wu J. 2004. Effects of changing scale on landscape pattern analysis: scaling relations. Landsc Ecol. 19(2):125–138. doi: 10.1023/B:LAND.0000021711.40074.ae.
  • Xi C, Han M, Hu X, Liu B, He K, Luo G, Cao X. 2022. Effectiveness of Newmark-based sampling strategy for coseismic landslide susceptibility mapping using deep learning, support vector machine, and logistic regression. Bull Eng Geol Environ. 81(5). doi: 10.1007/s10064-022-02664-5.
  • Xu S, Song Y, Hao X. 2022. A comparative study of shallow machine learning models and deep learning models for landslide susceptibility assessment based on imbalanced data. Forests. 13(11):1908. doi: 10.3390/f13111908.
  • Yan C, Ren X, Cheng Y, Song B, Li Y, Tian W. 2020. Geomechanical issues in the exploitation of natural gas hydrate. Gondwana Res. 81:403–422. doi: 10.1016/j.gr.2019.11.014.
  • Yang C, Liu LL, Huang F, Huang L, Wang XM. 2023. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondwana Res. 123:198–216. doi: 10.1016/j.gr.2022.05.012.
  • Yang Y, Yu W, Liu Z, Zhao L, Lu C, Wu M, Niu R. 2022. Optimization of the Landslide Susceptibility Model based on Deep Forest and Twice-Sample. In. Proceedings - 2022 Chinese Automation Congress, CAC 2022. Vol. 2022-January. [place unknown]. doi: 10.1109/CAC57257.2022.10055494.
  • Yi Y, Zhang W, Xu X, Zhang Z, Wu X. 2022. Evaluation of neural network models for landslide susceptibility assessment. Int J Digit Earth. 15(1):934–953. doi: 10.1080/17538947.2022.2062467.
  • Yong C, Peijun S. 2008. Natural disasters. Beijing: Beijing Normal University Press.
  • Youssef AM, Pradhan B, Dikshit A, Al-Katheri MM, Matar SS, Mahdi AM. 2022. Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: comparison of their performance at Asir Region, KSA. Bull Eng Geol Environ. 81(4). doi: 10.1007/s10064-022-02657-4.
  • Yu X, Zhang K, Song Y, Jiang W, Zhou J. 2021. Study on landslide susceptibility mapping based on rock–soil characteristic factors. Sci Rep. 11(1). doi: 10.1038/s41598-021-94936-5.
  • Zabihi M,Mirchooli F,Motevalli A,Khaledi Darvishan A,Pourghasemi HR,Zakeri MA,Sadighi F. 2018. Spatial modelling of gully erosion in Mazandaran Province, northern Iran. Catena. 161:1–13. 10.1016/j.catena.2017.10.010.
  • Zeng Q, Yuan G, McSaveney M, Ma F, Wei R, Liao L, Du H. 2020. Timing and seismic origin of Nixu rock avalanche in southern Tibet and its implications on Nimu active fault. Eng Geol. 268:105522. doi: 10.1016/j.enggeo.2020.105522.
  • Zhang W, Wu J, Zhan S, Pan B, Cai Y. 2021. Environmental geochemical characteristics and the provenance of sediments in the catchment of lower reach of Yarlung Tsangpo River, southeast Tibetan Plateau. Catena (Amst). 200:105150. doi: 10.1016/j.catena.2021.105150.
  • Zhang Y, Yan Q. 2022. Landslide susceptibility prediction based on high-trust non-landslide point selection. IJGI. 11(7):398. doi: 10.3390/ijgi11070398.
  • Zhao L, Wu X, Niu R, Wang Y, Zhang K. 2020. Using the rotation and random forest models of ensemble learning to predict landslide susceptibility. Geomatics Nat Hazards Risk. 11(1):1542–1564. doi: 10.1080/19475705.2020.1803421.
  • Zhao P, Masoumi Z, Kalantari M, Aflaki M, Mansourian A. 2022. A GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods. Remote Sens (Basel). 14(1):211. doi: 10.3390/rs14010211.
  • Zhou X, Wen H, Zhang Y, Xu J, Zhang W. 2021. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci Front. 12(5):101211. doi: 10.1016/j.gsf.2021.101211.
  • Zhu D, Chen T, Wang Z, Niu R. 2021. Detecting ecological spatial-temporal changes by remote sensing ecological index with local adaptability. J Environ Manage. 299:113655. doi: 10.1016/j.jenvman.2021.113655.
  • Zhu D, Chen T, Zhen N, Niu R. 2020. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index. Environ Sci Pollut Res. 27(13):15716–15728. doi: 10.1007/s11356-020-08054-2.
  • Zhuo L, Huang Y, Zheng J, Cao J, Guo D. 2023. Landslide susceptibility mapping in Guangdong Province, China, using random forest model and considering sample type and balance. Sustainability (Switzerland). 15(11):9024. doi: 10.3390/su15119024.