1,331
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flood susceptibility mapping leveraging open-source remote-sensing data and machine learning approaches in Nam Ngum River Basin (NNRB), Lao PDR

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2357650 | Received 26 Feb 2024, Accepted 15 May 2024, Published online: 28 May 2024

References

  • Adams G, Blakers RS, Someth P. 2018. Rapid initial assessment of the state of water resources in Lao PDR -Support the Lao National Water Strategy. Canberra.
  • Ahmed IA, Talukdar S, Shahfahad, Parvez A, Rihan M, Baig MRI, Rahman A. 2022. Flood susceptibility modeling in the urban watershed of Guwahati using improved metaheuristic-based ensemble machine learning algorithms. Geocarto Int. 37(26):12238–12266. doi: 10.1080/10106049.2022.2066200.
  • Al-Abadi AM. 2018. Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study. Arab J Geosci. 11(9):218. doi: 10.1007/s12517-018-3584-5.
  • Al-Aizari AR, Al-Masnay YA, Aydda A, Zhang J, Ullah K, Islam A, Habib T, Kaku DU, Nizeyimana JC, Al-Shaibah B, et al. 2022. Assessment analysis of flood susceptibility in tropical desert area: a case study of Yemen. Remote Sens. 14(16):4050. doi: 10.3390/rs14164050.
  • Aldiansyah S, Wardani F. 2023. Evaluation of flood susceptibility prediction based on a resampling method using machine learning. J Water Clim Change. 14(3):937–961. doi: 10.2166/wcc.2023.494.
  • Alin A. 2010. Multicollinearity. WIREs Comput Stats. 2(3):370–374. doi: 10.1002/wics.84.
  • Al-Kindi KM, Alabri Z. 2024. Investigating the role of the key conditioning factors in flood susceptibility mapping through machine learning approaches. Earth Syst Environ. 8(1):63–81. doi: 10.1007/s41748-023-00369-7.
  • Amiri A, Soltani K, Ebtehaj I, Bonakdari H. 2024. A novel machine learning tool for current and future flood susceptibility mapping by integrating remote sensing and geographic information systems. J Hydrol. 632:130936. doi: 10.1016/j.jhydrol.2024.130936.
  • Andaryani S, Nourani V, Haghighi AT, Keesstra S. 2021. Integration of hard and soft supervised machine learning for flood susceptibility mapping. J Environ Manage. 291:112731. doi: 10.1016/j.jenvman.2021.112731.
  • Arabameri A, Rezaei K, Cerdà A, Conoscenti C, Kalantari Z. 2019. A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in northern Iran. Sci Total Environ. 660:443–458. doi: 10.1016/j.scitotenv.2019.01.021.
  • Arabameri A, Seyed Danesh A, Santosh M, Cerda A, Chandra Pal S, Ghorbanzadeh O, Roy P, Chowdhuri I. 2022. Flood susceptibility mapping using meta-heuristic algorithms. Geomat Nat Hazards Risk. 13(1):949–974. doi: 10.1080/19475705.2022.2060138.
  • Arora A, Arabameri A, Pandey M, Siddiqui MA, Shukla UK, Bui DT, Mishra VN, Bhardwaj A. 2021. Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Sci Total Environ. 750:141565. doi: 10.1016/j.scitotenv.2020.141565.
  • Askar S, Zeraat Peyma S, Yousef MM, Prodanova NA, Muda I, Elsahabi M, Hatamiafkoueieh J. 2022. Flood susceptibility mapping using remote sensing and integration of decision table classifier and metaheuristic algorithms. Water Switz. 14(19):3062. doi: 10.3390/w14193062.
  • Avand M, Kuriqi A, Khazaei M, Ghorbanzadeh O. 2022. DEM resolution effects on machine learning performance for flood probability mapping. J Hydro-Environ Res. 40:1–16. doi: 10.1016/j.jher.2021.10.002.
  • Avand M, Moradi H, Lasboyee MR. 2021. Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability. J Hydrol. 595:125663. doi: 10.1016/j.jhydrol.2020.125663.
  • Baig MA, Xiong D, Rahman M, Islam MM, Elbeltagi A, Yigez B, Rai DK, Tayab M, Dewan A. 2022. How do multiple kernel functions in machine learning algorithms improve precision in flood probability mapping? Nat Hazards. 113(3):1543–1562. doi: 10.1007/s11069-022-05357-0.
  • Bartlett R, Baker J, Lacombe G, Douangsavanh S, Jeuland M. 2012. Analyzing economic tradeoffs of water use in the Nam Ngum River Basin, Lao PDR. Working Paper EE 12–10. Nicholas Institute for Environmental Policy Solutions, Duke University. 38p. SSRN J. doi: 10.2139/ssrn.2469222.
  • Bera S, Das A, Mazumder T. 2022. Evaluation of machine learning, information theory and multi-criteria decision analysis methods for flood susceptibility mapping under varying spatial scale of analyses. Remote Sens Appl Soc Environ. 25:100686. doi: 10.1016/j.rsase.2021.100686.
  • Bhattarai Y, Duwal S, Sharma S, Talchabhadel R. 2024. Leveraging machine learning and open-source spatial datasets to enhance flood susceptibility mapping in transboundary river basin. Int J Digit Earth. 17(1):2313857. doi: 10.1080/17538947.2024.2313857.
  • Broekhuizen H, Groothuis-Oudshoorn CGM, Van Til JA, Hummel JM, IJzerman MJ. 2015. A review and classification of approaches for dealing with uncertainty in multi-criteria decision analysis for healthcare decisions. Pharmacoeconomics. 33(5):445–455. doi: 10.1007/s40273-014-0251-x.
  • Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, et al. 2013. API design for machine learning software: experiences from the scikit-learn project. 1–15.
  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K. 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw. 95:229–245. doi: 10.1016/j.envsoft.2017.06.012.
  • Chen C-Y, Yu F-C. 2011. Morphometric analysis of debris flows and their source areas using GIS. Geomorphology. 129(3–4):387–397. doi: 10.1016/j.geomorph.2011.03.002.
  • Chen S, Huang W, Chen Y, Feng M. 2021. An adaptive thresholding approach toward rapid flood coverage extraction from Sentinel-1 SAR Imagery. Remote Sens. 13(23):4899. doi: 10.3390/rs13234899.
  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ. 651(Pt 2):2087–2096. doi: 10.1016/j.scitotenv.2018.10.064.
  • Cirella GT, Iyalomhe FO. 2018. Flooding conceptual review: sustainability-focalized best practices in Nigeria. Appl Sci. 8(9):1558. doi: 10.3390/app8091558.
  • Costache R, Popa MC, Tien Bui D, Diaconu DC, Ciubotaru N, Minea G, Pham QB. 2020. Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning. J Hydrol. 585:124808. doi: 10.1016/j.jhydrol.2020.124808.
  • Costache R, Tien Bui D. 2019. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: a case study at the Putna river catchment of Romania. Sci Total Environ. 691:1098–1118. doi: 10.1016/j.scitotenv.2019.07.197.
  • Dabija A, Kluczek M, Zagajewski B, Raczko E, Kycko M, Al-Sulttani AH, Tardà A, Pineda L, Corbera J. 2021. Comparison of support vector machines and random forests for Corine land cover mapping. Remote Sens. 13(4):777. doi: 10.3390/rs13040777.
  • Davis J, Goadrich M. 2006. The relationship between precision-recall and ROC curves. In: Proc 23rd Int Conf Mach Learn – ICML 06 [Internet]. Pittsburgh (PA): ACM Press; p. 233–240. doi: 10.1145/1143844.1143874.
  • Dhungana S, Shrestha S, Van TP, Kc S, Das Gupta A, Nguyen TPL. 2023. Evaluation of gridded precipitation products in the selected sub-basins of Lower Mekong River Basin. Theor Appl Climatol. 151(1–2):293–310. doi: 10.1007/s00704-022-04268-1.
  • Di Baldassarre G, Montanari A, Lins H, Koutsoyiannis D, Brandimarte L, Blöschl G. 2010. Flood fatalities in Africa: from diagnosis to mitigation. Geophys Res Lett. 37(22): L22402. doi: 10.1029/2010GL045467.
  • Dodangeh E, Choubin B, Eigdir AN, Nabipour N, Panahi M, Shamshirband S, Mosavi A. 2020. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Sci Total Environ. 705:135983. doi: 10.1016/j.scitotenv.2019.135983.
  • Du J, Fan Z, Pu J. 2020. Comparative study on flash flood hazard assessment for Nam Ou River Basin, Lao PDR. Nat Hazards. 102(3):1393–1417. doi: 10.1007/s11069-020-03972-3.
  • Duwal S, Liu D, Pradhan PM. 2023. Flood susceptibility modeling of the Karnali river basin of Nepal using different machine learning approaches. Geomat Nat Hazards Risk. 14(1):2217321 doi: 10.1080/19475705.2023.2217321.
  • Elkhrachy I, Pham QB, Costache R, Mohajane M, Rahman KU, Shahabi H, Linh NTT, Anh DT. 2021. Sentinel‐1 remote sensing data and Hydrologic Engineering Centres River Analysis System two‐dimensional integration for flash flood detection and modelling in New Cairo City. J Flood Risk Manage. 14(2):e12692. doi: 10.1111/jfr3.12692.
  • Fang Z, Wang Y, Peng L, Hong H. 2021. Predicting flood susceptibility using LSTM neural networks. J Hydrol. 594:125734–125734. doi: 10.1016/j.jhydrol.2020.125734.
  • Felix AY, Sasipraba T. 2019. Flood detection using gradient boost machine learning approach. In: 2019 Int Conf Comput Intell Knowl Econ ICCIKE [Internet]. Dubai: IEEE; p. 779–783. doi: 10.1109/ICCIKE47802.2019.9004419.
  • FitzGerald G, Du W, Jamal A, Clark M, Hou X-Y. 2010. Flood fatalities in contemporary Australia (1997–2008). Emerg Med Australas. 22(2):180–186. doi: 10.1111/j.1742-6723.2010.01284.x.
  • Florinsky IV. 2017. An illustrated introduction to general geomorphometry. Prog Phys Geogr Earth Environ. 41(6):723–752. doi: 10.1177/0309133317733667.
  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena S, Tiede D, Aryal J. 2019. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 11(2):196. doi: 10.3390/rs11020196.
  • Government of Lao PDR, Asian Development Bank. 2022. Lao Peoples Democr Repub – Gov Asian Dev Bank [Internet]. [accessed 2023 Nov 17]. https://www.preventionweb.net/publication/national-strategy-disaster-risk-reduction-nsdrr-2021-2030-lao-pdr.
  • Hamidi E, Peter BG, Munoz DF, Moftakhari H, Moradkhani H. 2023. Fast flood extent monitoring with SAR change detection using Google Earth Engine. IEEE Trans Geosci Remote Sens. 61:1–19. doi: 10.1109/TGRS.2023.3240097.
  • Hanley JA. 1989. Receiver operating characteristic (ROC) methodology: the state of the art. Crit Rev Diagn Imaging. 29(3):307–335.
  • Hansana P, Guo X, Zhang S, Kang X, Li S. 2023. Flood analysis using multi-scale remote sensing observations in Laos. Remote Sens. 15(12):3166. doi: 10.3390/rs15123166.
  • Hasanuzzaman M, Islam A, Bera B, Shit PK. 2022. A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (tropical river, India). Phys Chem Earth Parts ABC. 127:103198. doi: 10.1016/j.pce.2022.103198.
  • Ighile EH, Shirakawa H, Tanikawa H. 2022. Application of GIS and machine learning to predict flood areas in Nigeria. Sustainability. 14(9):5039. doi: 10.3390/su14095039.
  • Imamura Y. 2022. Development of a method for assessing country-based flood risk at the global scale. Int J Disaster Risk Sci. 13(1):87–99. doi: 10.1007/s13753-021-00388-w.
  • Janizadeh S, Avand M, Jaafari A, Van Phong T, Bayat M, Ahmadisharaf E, Prakash I, Pham BT, Lee S. 2019. Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh watershed, Iran. Sustain Switz. 11(19):5426. doi: 10.3390/su11195426.
  • Keophila V, Promwungkwa A, Ngamsanroaj K. 2019. Effectiveness of cascades reservoir for flood control operation and electricity production in Nam Ngum River. J Phys Conf Ser. 1175:012276. doi: 10.1088/1742-6596/1175/1/012276.
  • Khalil U, Khan NM. 2017. Floodplain mapping for Indus River: Chashma –Taunsa Reach.
  • Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR. 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards. 83(2):947–987. doi: 10.1007/s11069-016-2357-2.
  • Khosravi K, Pham BT, Chapi K, Shirzadi A, Shahabi H, Revhaug I, Prakash I, Tien Bui D. 2018. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ. 627:744–755. doi: 10.1016/j.scitotenv.2018.01.266.
  • Khosravi K, Shahabi H, Pham BT, Adamowski J, Shirzadi A, Pradhan B, Dou J, Ly HB, Gróf G, Ho HL, et al. 2019. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J Hydrol. 573:311–323. (March): doi: 10.1016/j.jhydrol.2019.03.073.
  • Kimmany B, Ruangrassamee P, Visessri S. 2020. Optimal multi-reservoir operation for hydropower production in the Nam Ngum River Basin. Eng J. 24(5):1–13. doi: 10.4186/ej.2020.24.5.1.
  • Kulithalai SSP, Kundapura S. 2023. Spatial mapping of flood susceptibility using decision tree–based machine learning models for the Vembanad Lake System in Kerala, India. J Water Resour Plann Manage. 149(10):04023052. doi: 10.1061/JWRMD5.WRENG-5858.
  • Kumar R, Acharya P. 2016. Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach. Nat Hazards. 84(1):437–464. doi: 10.1007/s11069-016-2428-4.
  • Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N, Peduzzi P, Mechler R, Bouwer LM, Arnell N, Mach K, et al. 2014. Le risque d’inondation et les perspectives de changement climatique mondial et régional. Hydrol Sci J. 59(1):1–28. doi: 10.1080/02626667.2013.857411.
  • Li K, Wu S, Dai E, Xu Z. 2012. Flood loss analysis and quantitative risk assessment in China. Nat Hazards. 63(2):737–760. doi: 10.1007/s11069-012-0180-y.
  • Liu J, Wang J, Xiong J, Cheng W, Li Y, Cao Y, He Y, Duan Y, He W, Yang G. 2022. Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the Belt and Road region. Geocarto Int. 37(25):9817–9846. doi: 10.1080/10106049.2022.2025918.
  • Liu J, Xiong J, Chen Y, Sun H, Zhao X, Tu F, Gu Y. 2023. A new avenue to improve the performance of integrated modeling for flash flood susceptibility assessment: applying cluster algorithms. Ecol Indic. 146:109785. doi: 10.1016/j.ecolind.2022.109785.
  • Liu X, Sahli H, Meng Y, Huang Q, Lin L. 2017. Flood inundation mapping from optical satellite images using spatiotemporal context learning and modest AdaBoost. Remote Sens. 9(6):617. doi: 10.3390/rs9060617.
  • Ma M, Zhao G, He B, Li Q, Dong H, Wang S, Wang Z. 2021. XGBoost-based method for flash flood risk assessment. J Hydrol. 598:126382. doi: 10.1016/j.jhydrol.2021.126382.
  • Maharjan M, Timilsina S, Ayer S, Singh B, Manandhar B, Sedhain A. 2024. Flood susceptibility assessment using machine learning approach in the Mohana-Khutiya River of Nepal. Nat Hazards Res. 4(1):32-45. doi: 10.1016/j.nhres.2024.01.001.
  • Martinis S, Plank S, Ćwik K. 2018. The use of Sentinel-1 time-series data to improve flood monitoring in arid areas. Remote Sens. 10(4):583. doi: 10.3390/rs10040583.
  • Meema T, Tachikawa Y, Ichikawa Y, Yorozu K. 2021. Uncertainty assessment of water resources and long-term hydropower generation using a large ensemble of future climate projections for the Nam Ngum River in the Mekong Basin. J Hydrol Reg Stud. 36:100856. doi: 10.1016/j.ejrh.2021.100856.
  • Mehravar S, Razavi-Termeh SV, Moghimi A, Ranjgar B, Foroughnia F, Amani M. 2023. Flood susceptibility mapping using multi-temporal SAR imagery and novel integration of nature-inspired algorithms into support vector regression. J Hydrol. 617:129100. doi: 10.1016/j.jhydrol.2023.129100.
  • Miles J. 2014. Tolerance and variance inflation factor. In: Wiley StatsRef Stat Ref Online [Internet]. New York: John Wiley & Sons, Ltd. doi: 10.1002/9781118445112.stat06593.
  • Mirzaei S, Vafakhah M, Pradhan B, Alavi SJ. 2021. Flood susceptibility assessment using extreme gradient boosting (EGB), Iran. Earth Sci Inform. 14(1):51–67. doi: 10.1007/s12145-020-00530-0.
  • Mojaddadi H, Pradhan B, Nampak H, Ahmad N, Ghazali AHb 2017. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat Nat Hazards Risk. 8(2):1080–1102. doi: 10.1080/19475705.2017.1294113.
  • Morrison A, Westbrook C j, Noble B f 2018. A review of the flood risk management governance and resilience literature. J Flood Risk Manage. 11(3):291–304. doi: 10.1111/jfr3.12315.
  • Nachappa TG, Piralilou ST, Gholamnia K, Ghorbanzadeh O, Rahmati O, Blaschke T, Gudiyangada Nachappa T, Tavakkoli Piralilou S, Gholamnia K, Ghorbanzadeh O, et al. 2020. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J Hydrol. 590:125275. doi: 10.1016/j.jhydrol.2020.125275.
  • Nagler T, Rott H, Hetzenecker M, Wuite J, Potin P. 2015. The Sentinel-1 mission: new opportunities for ice sheet observations. Remote Sens. 7(7):9371–9389. doi: 10.3390/rs70709371.
  • Natarajan L, Usha T, Gowrappan M, Palpanabhan Kasthuri B, Moorthy P, Chokkalingam L. 2021. Flood susceptibility analysis in Chennai Corporation using frequency ratio model. J Indian Soc Remote Sens. 49(7):1533–1543. doi: 10.1007/s12524-021-01331-8.
  • Nguyen HD. 2022. Flood susceptibility assessment using hybrid machine learning and remote sensing in Quang Tri province, Vietnam. Trans GIS. 26(7):2776–2801. doi: 10.1111/tgis.12980.
  • Ozdemir A, Altural T. 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: sultan Mountains, SW Turkey. J Asian Earth Sci. 64:180–197. doi: 10.1016/j.jseaes.2012.12.014.
  • Phrakonkham S, Kazama S, Komori D, Sopha S. 2019. Distributed hydrological model for assessing flood hazards in Laos. J Water Resour Prot. 11(08):937–958. doi: 10.4236/jwarp.2019.118056.
  • Poudyal CP, Chang C, Oh H-J, Lee S. 2010. Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci. 61(5):1049–1064. doi: 10.1007/s12665-009-0426-5.
  • Pourghasemi HR, Kariminejad N, Amiri M, Edalat M, Zarafshar M, Blaschke T, Cerda A. 2020. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Sci Rep. 10(1):3203. doi: 10.1038/s41598-020-60191-3.
  • Priscillia S, Schillaci C, Lipani A. 2021. Flood susceptibility assessment using artificial neural networks in Indonesia. Artif Intell Geosci. 2:215–222. doi: 10.1016/j.aiig.2022.03.002.
  • Rahmati O, Pourghasemi HR, Zeinivand H. 2016. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int. 31(1):42–70. doi: 10.1080/10106049.2015.1041559.
  • Ramesh V, Iqbal SS. 2022. Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: a case study of Greater Mumbai, Maharashtra, India. Geocarto Int. 37(2):581–606. doi: 10.1080/10106049.2020.1730448.
  • Rappaport EN. 2014. Fatalities in the United States from Atlantic tropical cyclones: new data and interpretation. Bull Am Meteorol Soc. 95(3):341–346. doi: 10.1175/BAMS-D-12-00074.1.
  • Razavi-Termeh SV, Sadeghi-Niaraki A, Choi S-M. 2023. A new approach based on biology-inspired metaheuristic algorithms in combination with random forest to enhance the flood susceptibility mapping. J Environ Manage. 345:118790. doi: 10.1016/j.jenvman.2023.118790.
  • Razavi-Termeh SV, Seo M, Sadeghi-Niaraki A, Choi S-M. 2023. Flash flood detection and susceptibility mapping in the Monsoon period by integration of optical and radar satellite imagery using an improvement of a sequential ensemble algorithm. Weather Clim Extrem. 41:100595. doi: 10.1016/j.wace.2023.100595.
  • Saber M, Boulmaiz T, Guermoui M, Abdrabo KI, Kantoush SA, Sumi T, Boutaghane H, Hori T, Binh DV, Nguyen BQ, et al. 2023. Enhancing flood risk assessment through integration of ensemble learning approaches and physical-based hydrological modeling. Geomat Nat Hazards Risk. 14(1):2203798. doi: 10.1080/19475705.2023.2203798.
  • Saber M, Boulmaiz T, Guermoui M, Abdrabo KI, Kantoush SA, Sumi T, Boutaghane H, Nohara D, Mabrouk E. 2022. Examining LightGBM and CatBoost models for wadi flash flood susceptibility prediction. Geocarto Int. 37(25):7462–7487. doi: 10.1080/10106049.2021.1974959.
  • Saha TK, Pal S, Talukdar S, Debanshi S, Khatun R, Singha P, Mandal I. 2021. How far spatial resolution affects the ensemble machine learning based flood susceptibility prediction in data sparse region. J Environ Manage. 297:113344. doi: 10.1016/j.jenvman.2021.113344.
  • Saravanan S, Abijith D, Reddy NM, Kss P, Janardhanam N, Sathiyamurthi S, Sivakumar V. 2023. Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India. Urban Clim. 49:101503. doi: 10.1016/j.uclim.2023.101503.
  • Schoppa L,Vogel T,Zöller G,Kreibich H. 2020. Probabilistic flood loss models for companies. Water Resour Res. 56, e2020WR027649.
  • Sepp H, Jürgen S. 1997. Long short-term meomry. Neural Comput. 9(8):1735–1780.
  • Shafizadeh-Moghadam H, Valavi R, Shahabi H, Chapi K, Shirzadi A. 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J Environ Manage. 217:1–11. doi: 10.1016/j.jenvman.2018.03.089.
  • Shahabi H, Shirzadi A, Ghaderi K, Omidvar E, Al-Ansari N, Clague JJ, Geertsema M, Khosravi K, Amini A, Bahrami S, et al. 2020. Flood detection and susceptibility mapping using Sentinel-1 remote sensing data and a machine learning approach: hybrid intelligence of bagging ensemble based on K-Nearest Neighbor classifier. Remote Sens. 12(2):266. doi: 10.3390/rs12020266.
  • Sharir K, Roslee R. 2022. Flood susceptibility assessment (FSA) using GIS-based frequency ratio (FR) model in Kota Belud, Sabah, Malaysia. Int J Des Nat Ecodynamics. 17(2):203–208. doi: 10.18280/ijdne.170206.
  • Sørensen R, Zinko U, Seibert J. 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci. 10(1):101–112. doi: 10.5194/hess-10-101-2006.
  • Talukdar S, Ghose B, Shahfahad, Salam R, Mahato S, Pham QB, Linh NTT, Costache R, Avand M. 2020. Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stoch Environ Res Risk Assess. 34(12):2277–2300. doi: 10.1007/s00477-020-01862-5.
  • Tang X, Li J, Liu M, Liu W, Hong H. 2020. Flood susceptibility assessment based on a novel random Naïve Bayes method: a comparison between different factor discretization methods. Catena. 190:104536. doi: 10.1016/j.catena.2020.104536.
  • Tehrany MS, Jones S, Shabani F. 2019. Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena. 175:174–192. doi: 10.1016/j.catena.2018.12.011.
  • Tehrany MS, Kumar L, Shabani F. 2019. A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine: brisbane, Australia. PeerJ. 7(10):e7653. doi: 10.7717/peerj.7653.
  • Tehrany MS, Pradhan B, Jebur MN. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol. 512:332–343. doi: 10.1016/j.jhydrol.2014.03.008.
  • Tehrany MS, Pradhan B, Jebur MN. 2015. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Environ Res Risk Assess. 29(4):1149–1165. doi: 10.1007/s00477-015-1021-9.
  • Tehrany MS, Pradhan B, Mansor S, Ahmad N. 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena. 125:91–101. doi: 10.1016/j.catena.2014.10.017.
  • Tien Bui D, Khosravi K, Li S, Shahabi H, Panahi M, Singh V, Chapi K, Shirzadi A, Panahi S, Chen W, et al. 2018. New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling. Water. 10(9):1210. doi: 10.3390/w10091210.
  • Towfiqul Islam ARM, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A, Linh NTT. 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front. 12(3):101075. doi: 10.1016/j.gsf.2020.09.006.
  • Tripathy P. 2019. Neural network for satellite data classification using tensorfow in python. 1–12.
  • Twele A, Cao W, Plank S, Martinis S. 2016. Sentinel-1-based flood mapping: a fully automated processing chain. Int J Remote Sens. 37(13):2990–3004. doi: 10.1080/01431161.2016.1192304.
  • UN, World Bank, GFDRR, EU. 2018. UN, World Bank, GFDRR & EU. UNDP [Internet]. [accessed 2023 Nov 29]. https://www.undp.org/laopdr/publications/post-disaster-needs-assessment-2018-floods-lao-pdr.
  • UNDRR. 2019. Disaster risk reduction in Lao PDR: status report 2019 [Internet]. Bangkok: United Nations Office for Disaster Risk Reduction (UNDRR), Regional Office for Asia and the Pacific. https://reliefweb.int/attachments/11ee7862-c016-37c0-81e0-06504dad05f5/68230_3laopdrdrmstatusreport.pdf.
  • Vilandone Keophila 2018. Multi-objective optimization for flood control operation and electricity production of Nam Ngum 1 and 2 hydropower plants. J Thai Interdiscip Res. 13:58. doi: 10.14456/JTIR.2018.52.
  • Wang Y, Fang Z, Hong H, Peng L. 2020. Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol. 582:124482. doi: 10.1016/j.jhydrol.2019.124482.
  • Wang Y, Hong H, Chen W, Li S, Panahi M, Khosravi K, Shirzadi A, Shahabi H, Panahi S, Costache R. 2019. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J Environ Manage. 247:712–729. doi: 10.1016/j.jenvman.2019.06.102.
  • Wei X, Cai S, Ni P, Zhan W. 2020. Impacts of climate change and human activities on the water discharge and sediment load of the Pearl River, southern China. Sci Rep. 10(1):16743. doi: 10.1038/s41598-020-73939-8.
  • Wubalem A, Tesfaw G, Dawit Z, Getahun B, Mekuria T, Jothimani M. 2021. Comparison of statistical and analytical hierarchy process methods on flood susceptibility mapping: in a case study of the Lake Tana sub-basin in northwestern Ethiopia. Open Geosci. 13(1):1668–1688. doi: 10.1515/geo-2020-0329.
  • Yariyan P, Avand M, Abbaspour RA, Torabi Haghighi A, Costache R, Ghorbanzadeh O, Janizadeh S, Blaschke T. 2020. Flood susceptibility mapping using an improved analytic network process with statistical models. Geomat Nat Hazards Risk. 11(1):2282–2314. doi: 10.1080/19475705.2020.1836036.
  • Youssef AM, Pradhan B, Sefry SA. 2016. Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ Earth Sci. 75(1):12. doi: 10.1007/s12665-015-4830-8.
  • Zeleňáková M, Fijko R, Labant S, Weiss E, Markovič G, Weiss R. 2019. Flood risk modelling of the Slatvinec stream in Kružlov village, Slovakia. J Clean Prod. 212:109–118. doi: 10.1016/j.jclepro.2018.12.008.
  • Zhang C, Feng Y, Hu L, Tapete D, Pan L, Liang Z, Cigna F, Yue P. 2022. A domain adaptation neural network for change detection with heterogeneous optical and SAR remote sensing images. Int J Appl Earth Obs Geoinformation. 109:102769. doi: 10.1016/j.jag.2022.102769.