174
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing coupled human-flood interactions using LiDAR geostatistics and neighbourhood analyses

, &
Article: 2361812 | Received 25 Dec 2023, Accepted 25 May 2024, Published online: 07 Jun 2024

References

  • Armstrong S, Lazarus E. 2019. Reconstructing patterns of coastal risk in space and time along the US Atlantic coast, 1970-2016. Nat Hazards Earth Syst Sci. 19(11):2497–2511. doi:10.5194/nhess-19-2497-2019.
  • Brasington J, Smart R. 2003. Close range digital photogrammetric analysis of experimental drainage basin evolution. Earth Surf Processes Landf. 28(3):231–247. doi:10.1002/esp.480.
  • Breen MJ, Kebede AS, König CS. 2022. The safe development paradox in flood risk management: a critical review. Sustainability. 14(24):16955. doi:10.3390/su142416955.
  • Brock P, Purkis J. 2009. The emerging role of lidar remote sensing in coastal research and resource management. J Coast Res. 10053:1–5. doi:10.2112/SI53-001.1.
  • Burby R. 2006. Hurricane Katrina and the paradoxes of government disaster policy: bringing about wise governmental decisions for hazardous areas. Ann Am Acad Polit Soc Sci. 604(1):171–191. doi:10.1177/0002716205284676.
  • Burton C, Cutter S. 2008. Levee failures and social vulnerability in the Sacramento-San Joaquin Delta Area, California. Nat Hazards Rev. 9(3):136–149. doi:10.1061/(ASCE)1527-6988(2008)9:3(136).
  • Chang H, Huang K, Wu C. 2006. Determination of sample size in using central limit theorem for Weibull distribution. Int J Inf Manage Sci. 17(3):31–46.
  • Chen L, Lin L. 2010. Detection of building changes from aerial images and light detection and ranging (LIDAR) data. J Appl Remote Sens. 4(1):041870. doi:10.1117/1.3525560.
  • Di Baldassarre G, Kooy M, Kemerink J, Brandimarte L. 2013b. Towards understanding the dynamic behaviour of floodplains as human-water systems. Hydrol Earth Syst Sci. 17(8):3235–3244. doi:10.5194/hess-17-3235-2013.
  • Di Baldassarre G, Viglione A, Carr G, Kuil L, Salinas J, Blöschl G. 2013a. Socio-hydrology: conceptualising human-flood interactions. Hydrol Earth Syst Sci. 17(8):3295–3303. doi:10.5194/hess-17-3295-2013.
  • Erener A, Sarp G, Karaca M. 2020. An approach to urban building height and floor estimation by using LiDAR data. Arab J Geosci. 13(19):1005. doi:10.1007/s12517-020-06006-1.
  • Eriksen S, Schipper L, Scoville-Simonds M, Vincent K, Adam H, Brooks N, Harding B, Khatri D, Lenaerts L, Liverman D, et al. 2021. Adaptation interventions and their effect on vulnerability in developing countries: help, hindrance or irrelevance? World Dev. 141:105383. doi:10.1016/j.worlddev.2020.105383.
  • Fekete A, Sandholz S. 2021. Here comes the flood, but not failure? Lessons to learn after the heavy rain and pluvial floods in Germany 2021. Water. 13(21):3016. doi:10.3390/w13213016.
  • Gesch D. 2009. Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. J Coast Res. 10053:49–58. doi:10.2112/SI53-006.1.
  • Haer T, Husby T, Botzen W, Aerts J. 2020. The safe development paradox: an agent-based model for flood risk under climate change in the European Union. Global Environ Change. 60:102009. doi:10.1016/j.gloenvcha.2019.102009.
  • Hallegatte S, Green C, Nicholls R, Corfee-Morlot J. 2013. Future flood losses in major coastal cities. Nature Clim Change. 3(9):802–806. doi:10.1038/nclimate1979.
  • Heris M, Foks N, Bagstad K, Troy A, Ancona Z. 2020. A rasterized building footprint dataset for the United States. Sci Data. 7(1):207. doi:10.1038/s41597-020-0542-3.
  • Jiao S, Li W, Wen J. 2022. Spatiotemporal changes of manufacturing firms in the flood-prone Yangtze Delta. Environmental Hazards. 21(4):334–360. doi:10.1080/17477891.2021.1988502.
  • Kates R, Colten C, Laska S, Leatherman S. 2006. Reconstruction of New Orleans after Hurricane Katrina: a research perspective. Proc Natl Acad Sci USA. 103(40):14653–14660. doi:10.1073/pnas.0605726103.
  • King R. 2005. Hurricane Katrina: insurance losses and national capacities for financing disaster risk. Government and Finance Division.
  • Leger C, Balch C, Essex S. 2016. Understanding the planning challenges of Brownfield development in coastal urban areas of England. Plann Pract Res. 31(2):119–131. doi:10.1080/02697459.2016.1146428.
  • Lin Y, Cheng Y, Zhou T, Ravi R, Hasheminasab S, Flatt J, Troy C, Habib A. 2019. Evaluation of UAV LiDAR for mapping coastal environments. Remote Sens. 11(24):2893. doi:10.3390/rs11242893.
  • Ludy J, Kondolf G. 2012. Flood risk perception in lands “protected” by 100-year levees. Nat Hazards. 61(2):829–842. doi:10.1007/s11069-011-0072-6.
  • MacMahon A, Smith K, Lawrence G. 2015. Connecting resilience, food security and climate change: lessons from flooding in Queensland, Australia. J Environ Stud Sci. 5(3):378–391. doi:10.1007/s13412-015-0278-0.
  • MacManus K, Balk D, Engin H, McGranahan G, Inman R. 2021. Estimating population and urban areas at risk of coastal hazards, 1990–2015: how data choices matter. Earth Syst Sci Data. 13(12):5747–5801. doi:10.5194/essd-13-5747-2021.
  • Magnan A, Schipper E, Burkett M, Bharwani S, Burton I, Eriksen S, Gemenne F, Schaar J, Ziervogel G. 2016. Addressing the risk of maladaptation to climate change. WIREs Clim Change. 7(5):646–665. doi:10.1002/wcc.409.
  • Mascha E, Vetter T. 2018. Significance, errors, power, and sample size: the blocking and tackling of statistics. Anesthia Analg. 126(2):691–698. doi:10.1213/ANE.0000000000002741.
  • Montz B, Tobin G. 2008. Livin’ large with levees: lessons learned and lost. Nat Hazards Rev. 9(3):150–157. doi:10.1061/(ASCE)1527-6988(2008)9:3(150).
  • Palmer R. 2018. History of coastal engineering in Great Britain. Hist Heritage Coast Eng. 6:214–274. doi:10.1061/9780784401965.006.
  • Priestnall G, Jaafar J, Duncan A. 2000. Extracting urban features from LiDAR digital surface models. Comput Environ Urban Syst. 24(2):65–78. doi:10.1016/S0198-9715(99)00047-2.
  • Rumson A, Garcia A, Hallet S. 2020. The role of data within coastal resilience assessments: an East Anglia, UK, case study. Ocean Coast Manage. 185:105004. doi:10.1016/j.ocecoaman.2019.105004.
  • Schmid K, Hadley B, Wijekoon N. 2011. Vertical accuracy and use of topographic LIDAR data in coastal marshes. J Coast Res. 275(6A):116–132. doi:10.2112/JCOASTRES-D-10-00188.1.
  • Sharma M, Paige G, Miller S. 2010. DEM development from ground-based LiDAR data: a method to remove non-surface objects. Remote Sens. 2(11):2629–2642. doi:10.3390/rs2112629.
  • Siegert M. 2015. Sea level change. Grantham Institute.
  • Tobin G. 1995. The Levee love affair: a stormy relationship? J Am Water Resour Assoc. 31:359–367. doi:10.1111/j.1752-1688.1995.tb04025.x.
  • Tsutsui K, Rokugawa S, Nakagawa H, Miyazaki S, Cheng C, Shiraishi T, Yang S. 2007. Detection and volume estimation of large-scale landslides based on elevation-change analysis using DEMs extracted from high-resolution satellite stereo imagery. IEEE. 45(6):1681–1696. doi:10.1109/TGRS.2007.895209.
  • Wheaton J, Brasington J, Darby S, Sear D. 2009. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surf Processes Landf. 35(2):136–156. doi:10.1002/esp.1886.
  • White G. 1945. Human adjustment to floods. Chicago: University of Chicago.
  • Yan W, Shaker A, El-Ashmawy N. 2015. Urban land cover classification using airborne LiDAR data: a review. Remote Sens Environ. 158:295–310. doi:10.1016/j.rse.2014.11.001.
  • Zhou K, Lindenbergh R, Gorte B, Zlatanova S. 2020. LiDAR-guided dense matching for detecting changes and updating of buildings in Airborne LiDAR data. ISPRS J Photogramm Remote Sens. 162:200–213. doi:10.1016/j.isprsjprs.2020.02.005.