159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

3D Modelling approach to identify parametric configurations for pillar stability in underground metal mine: a case study

ORCID Icon &
Article: 2367630 | Received 06 Feb 2024, Accepted 09 Jun 2024, Published online: 20 Jun 2024

References

  • Bakhtavar E, Oraee K, Shahriar K, Ezzeddin B, Kazem O, Kourosh S, Engineering M. 2011. Determination of the Optimum Crown Pillar Thickness between Open Pit and Block Caving. In 29th International Conference on Ground Control in Mining: Dept. of Mining Engineering, College of Engineering and Mineral Resources, West Virginia University; p. 325–332. http://dspace.stir.ac.uk/handle/1893/3086.
  • Brady BHG, Brown ET. 2006. Rock mechanics: for underground mining: Kluwer Academic Publishers. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rock+mechanics%3A+for+underground+mining&btnG=.
  • Brady B, Lorig L. 1988. Analysis of rock reinforcement using finite difference methods. Comput Geotech. 5(2):123–149. doi: 10.1016/0266-352X(88)90042-0.
  • Chen T, Mitri HS. 2021. Strategies for surface crown pillar design using numerical modelling: a case study. Int J Rock Mech Min Sci. 138:104599. doi: 10.1016/j.ijrmms.2020.104599.
  • Deb D, Das KC. 2011. Enriched finite element procedures for analyzing decoupled bolts installed in rock mass. Num Anal Meth Geomech. 35(15):1636–1655. doi: 10.1002/nag.970.
  • Dhawan KR, Singh DN, Gupta ID. 2002. 2D and 3D finite element analysis of underground openings in an inhomogeneous rock mass. Int J Rock Mech Min Sci. 39(2):217–227. doi: 10.1016/S1365-1609(02)00020-5.
  • Dintwe TKM, Sasaoka T, Shimada H, Hamanaka A, Moses DN, Peng M, Fanfei M, Liu S, Ssebadduka R, Onyango JA. 2022. Numerical simulation of crown pillar behaviour in transition from open pit to underground mining. Geotech Geol Eng. 40(4):2213–2229. doi: 10.1007/s10706-021-02022-4.
  • Edelbro C. 2003. Rock mass strength: a review [Internet]:92–132. https://www.diva-portal.org/smash/record.jsf?pid=diva2:995907.
  • Esterhuizen GS, Dolinar DR, Ellenberger JL, Prosser LJ. 2011. Pillar and roof span design guidelines for underground stone mines. Pittsburgh, PA. https://stacks.cdc.gov/view/cdc/23444.
  • Ghasemi E, Kalhori H, Bagherpour R. 2017. Stability assessment of hard rock pillars using two intelligent classification techniques: a comparative study. Tunnelling Underground Space Technol. 68:32–37. doi: 10.1016/j.tust.2017.05.012.
  • Guggari V, Kumar H, Budi G. 2023. Stability analysis of crown pillar under the zone of relaxation around sub-level open stopes using numerical modelling. Geomatics Nat Hazards Risk. 14(1). doi: 10.1080/19475705.2023.2234072.
  • Guggari VB, Kumar H, Budi G. 2024. Numerical analysis for assessing the effects of crown pillar thickness on ore dilution around the sub-level open stopes. Ain Shams Eng J. 15(1):102301. doi: 10.1016/j.asej.2023.102301.
  • Heidarzadeh S, Saeidi A, Rouleau A. 2020. Use of probabilistic numerical modeling to evaluate the effect of geomechanical parameter variability on the probability of open-stope failure: a case study of the Niobec mine, Quebec (Canada). Rock Mech Rock Eng. 53(3):1411–1431. doi: 10.1007/s00603-019-01985-4.
  • Hoek E, Carranza-Torres C, Corkum B, others. 2002. Hoek-Brown failure criterion-2002 edition. Proceedings of NARMS-Tac. 1(1):267–273. https://www.rocscience.com/assets/resources/learning/hoek/Hoek-Brown-Failure-Criterion-2002.pdf.
  • Hoek E, Marinos P. 2000. Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnel Tunnel Intern. 32(11):45–51.
  • Kahraman S, Bilgin N, Feridunoglu C. 2003. Dominant rock properties affecting the penetration rate of percussive drills. Int J Rock Mech Min Sci. 40(5):711–723. doi: 10.1016/S1365-1609(03)00063-7.
  • Krauland N, Soder PE. 1987. Determining pillar strength-from pillar failure observation. E & MJ-Engng Min J [Internet]. 188(8):34–40. https://www.scopus.com/inward/record.url?eid=2-s2.0-0023400391&partnerID=10&rel=R3.0.0.
  • Kumar H, Deb D, Chakravarty D. 2016. Numerical analysis of sill and crown pillar stability for multilevel cut and fill stopes in different geomining conditions. Geotech Geol Eng. 34(2):529–549. doi: 10.1007/s10706-015-9964-7.
  • Kvapil R, Blake W. 1973. Geometry and stability determination of large dimension cut and fill rooms at Kamoto. In Proceedings of the Jublee Symposium on Mine Filling; p. 147–154.
  • Labuz JF, Zang A, Section AZ, Hazard S, Field S, German G. 2012. Mohr–Coulomb failure criterion. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. 2007-2014:227–231. doi: 10.1007/978-3-319-07713-0_19.
  • Li C, Zhou J, Armaghani DJ, Cao W, Yagiz S. 2021a. Stochastic assessment of hard rock pillar stability based on the geological strength index system. Geomech Geophys Geo-Energ Geo-Resour. 7(2):47. doi: 10.1007/s40948-021-00243-8.
  • Li C, Zhou J, Armaghani DJ, Li X. 2021b. Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques. Underground Space (China). 6(4):379–395. doi: 10.1016/j.undsp.2020.05.005.
  • Lu TK, Guo BH, Cheng LC, Wang J. 2008. Review and interpretation of intersection stability in deep underground based on numerical analysis. In Geotechnical aspects of underground construction in soft ground. Boca Raton: CRC Press; p. 815–820. https://api.taylorfrancis.com/content/chapters/edit/download?identifierName=doi&identifierValue=10.1201/9780203879986-123&type=chapterpdf.
  • Mark C. 2016. Science of empirical design in mining ground control. Int J Min Sci Technol. 26(3):461–470. doi: 10.1016/j.ijmst.2016.02.015.
  • Martin CD, Kaiser PK, Christiansson R. 2003. Stress, instability and design of underground excavations. Int J Rock Mech Min Sci. 40(7–8):1027–1047. doi: 10.1016/S1365-1609(03)00110-2.
  • Norén-Cosgriff K, Ramstad N, Neby A, Madshus C. 2020. Building damage due to vibration from rock blasting. Soil Dyn Earthquake Eng. 138:106331. doi: 10.1016/j.soildyn.2020.106331.
  • Obert L, Duvall WI, Merrill RH, others. 1960. Design of underground openings in competent rock. US Government Printing Office; https://digital.library.unt.edu/ark:/67531/metadc12741/.
  • Potvin Y, Marty H, Potvin Y, Hudyma M, Miller HDS. 1989. Rib pillar design in open stope mining. In 76th Annual Meeting Canadian Pulp and Paper Association (CPPA/ACPPP). Montreal, Quebec. https://www.researchgate.net/publication/281574981.
  • Potvin Y. 1988. Empirical open stope design in Canada. University of British Columbia; [Canada]. doi: 10.14288/1.0081130.
  • Saeidi A, Heidarzadeh S, Lalancette S, Rouleau A. 2021. The effects of in situ stress uncertainties on the assessment of open stope stability: case study at the Niobec Mine, Quebec (Canada). Geomech Energy Environ. 25:100194. doi: 10.1016/j.gete.2020.100194.
  • Shnorhokian S, Mitri HS, Thibodeau D. 2014. A methodology for calibrating numerical models with a heterogeneous rockmass. Int J Rock Mech Min Sci. 70:353–367. doi: 10.1016/j.ijrmms.2014.05.011.
  • Tavakoli M. 1994. Underground metal mine crown pillar stability analysis. Wollongong, Australia: University of Wollongong. https://ro.uow.edu.au/theses/1280.
  • Urli V, Esmaieli K. 2016. A stability-economic model for an open stope to prevent dilution using the ore-skin design. Int J Rock Mech Min Sci. 82:71–82. doi: 10.1016/j.ijrmms.2015.12.001.
  • Xu T, Tang CA, Yang TH, Zhu WC, Liu J. 2006. Numerical investigation of coal and gas outbursts in underground collieries. Int J Rock Mech Min Sci. 43(6):905–919. doi: 10.1016/j.ijrmms.2006.01.001.
  • Xu T, Yang T h, Chen C f, Liu H l, Yu Q l 2015. Mining induced strata movement and roof behavior in underground coal mine. Geomech Geophys Geo-Energ Geo-Resour. 1(3-4):79–89. doi: 10.1007/s40948-015-0010-2.
  • Zhang M, Shimada H, Sasaoka T, Matsui K, Dou L. 2014. Evolution and effect of the stress concentration and rock failure in the deep multi-seam coal mining. Environ Earth Sci. 72(3):629–643. doi: 10.1007/s12665-013-2985-8.
  • Zhang Y, Mitri HS. 2008. Elastoplastic stability analysis of mine haulage drift in the vicinity of mined stopes. Int J Rock Mech Min Sci. 45(4):574–593. doi: 10.1016/j.ijrmms.2007.07.020.