107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Radon and carbon dioxide emissions from the surface rupture zone produced by the 1920 Haiyuan M8.5 earthquake in Northwest China

, , , , , , , & show all
Article: 2367633 | Received 10 Apr 2024, Accepted 09 Jun 2024, Published online: 08 Jul 2024

References

  • Al-Hilal M, Abdul-Wahed MK. 2016. Tectonic and geologic influences on soil gas radon emission along the western extension of Damascus fault, Syria. Environ Earth Sci. 75(23):1–11. doi: 10.1007/s12665-016-6292-z.
  • Benà E, Ciotoli G, Ruggiero L, Coletti C, Bossew P, Massironi M, Mazzoli C, Mair V, Morelli C, Galgaro A, et al. 2022. Evaluation of tectonically enhanced radon in fault zones by quantification of the radon activity index. Sci Rep. 12(1):21586. doi: 10.1038/s41598-022-26124-y.
  • Burchfiel BC, Zhang P, Wang Y, Zhang W, Song F, Deng Q, Molnar P, Royden L. 1991. Geology of the Haiyuan Fault Zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the Northeastern Margin of the Tibetan Plateau. Tectonics. 10(6):1091–1110. doi: 10.1029/90TC02685.
  • Chen Z, Li Y, Liu Z, Wang J, Zhou X, Du J.,. 2018. Radon emission from soil gases in the active fault zones in the Capital of China and its environmental effects. Sci Rep. 8(1):16772. doi: 10.1038/s41598-018-35262-1.
  • Chen Z, Li Y, Liu ZF, He HY, Martinelli G, Lu C, Gao ZH. 2022. Geochemical and geophysical effects of tectonic activity in faulted areas of the North China Craton. Chem Geol. 609:121048. doi: 10.1016/j.chemgeo.2022.121048.
  • Cheng Q, Agterberg FP, Ballantyne SB. 1994. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 51(2):109–130. doi: 10.1016/0375-6742(94)90013-2.
  • Chiodini G, Caliro S, Cardellini C, Frondini F, Inguaggiato S, Matteucci F. 2011. Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes. Earth Planet Sc Lett. 304(3-4):389–398. doi: 10.1016/j.epsl.2011.02.016.
  • Ciotoli G, Lombardi S, Annunziatellis A. 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: fucino Plain, central Italy. J Geophys Res. 112(B5):1–23. doi: 10.1029/2005JB004044.
  • Ciotoli G, Sciarra A, Ruggier L, Annunziatellis A, Bigi S. 2016. Soil gas geochemical behaviour across buried and exposed faults during the 24 August 2016 central Italy earthquake. Ann Geophys. 59:1–11. doi: 10.4401/ag-7242.
  • Ciotoli G, Etiope G, Guerra M, Lombardi S. 1999. The detection of concealed faults in the Ofanto Basin using the correlation between soil gas fracture surveys. Tectonophysics. 301(3-4):321–332. doi: 10.1016/S0040-1951(98)00220-0.
  • Cui DX, Hao M, Li YH, Wang WP, Qin SL, Li ZJ. 2016. Present-day crustal movement and strain of the surrounding area of Ordos block derived from repeated GPS observations. Chin J Geophys. 59(10):3646–3661. doi: 10.6038/cjg20161012.
  • Daly C. 2006. Guidelines for assessing the suitability of spatial climate data sets. Int J Climatol. 26(6):707–721. doi: 10.1002/(ISSN)1097-0088.
  • Deng QD, Chen SF, Song FM, Zhu S, Wang Y, Zhang Jiao D, Burchfiel BC, Molnar P, Royden L. 1986. Variations in the geometry and amount of slip on the Haiyuan (Nanxihaushan) fault zone, China and the surface rupture of the 1920 Haiyuan earthquake. In: Das S, Boatwright J, Scholz CH, editors. Earthquake source mechanics. New York: American Geophysical Union AGU Geophysical Monograph Series, Wiley. doi: 10.1029/GM037p0169.
  • Dong JY, Zhou XC, Li Y, Li J. 2023. CO2 degassing characteristics in the co seismic surface rupture zone of the 2021MW7.4 Maduo earthquake, Qinghai, China. Quat Sci. 43(2):485–493. doi: 10.11928/j.issn.1001-7410.2023.02.16.
  • Du J, Si X, Chen Y, Fu H, Jian C. 2008. Geochemical anomalies connected with great earthquakes in China. In: Stefánssonó O, editor. Geochemistry research advances. New York: Nova Science Publishers; p. 57–92.
  • Fu CC, Yang TF, Chen CH, Lee LC, Wu YM, Liu TK, Walia V, Kumar A, Lai TH. 2017. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications. J Asian Earth Sci. 149:64–77. doi: 10.1016/j.jseaes.2017.02.032.
  • Fu CC, Yang TF, Walia V, Chen CH. 2005. Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Geochem J. 39(5):427–439. doi: 10.2343/geochemj.39.427.
  • Fujiyoshi R, Sakamoto K, Imanishi T, Sumiyoshi T, Sawamura S, Vaupotic J, Kobal I. 2006. Meteorological parameters contributing to variability in 222Rn activity concentrations in soil gas at a site in Sapporo. Japan. Sci. Total. Environ. 370:224–234.
  • Giammanco S, Sims KWW, Neri M. 2007. Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture. Am Geophys Union. 2007(10):1–14. doi: 10.1029/2007GC001644.
  • Guerra M, Lombardi S. 2001. Soil-gas method for tracing neotectonic faults in clay basins the Pisticci field (Southern Italy). Tectonophysics. 339(3–4):511–522. doi: 10.1016/S0040-1951(01)00072-5.
  • Han X, Li Y, Du J, Zhou X, Xie C, Zhang W. 2014. Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China. Nat Hazard Earth Syst Sci. 14:2803–2815. doi: 10.1016/10.5194/nhess-14-2803-2014.
  • Institute of Geology, China Earthquake Administration, Earthquake Agency of Ningxia Hui Autonomous Region. 1990. [Haiyuan Active Fault Zone]. Beijing: Seismological Press; p. 234–855. Chinese.
  • Iovine G, Guagliardi I, Bruno C, Greco R, Tallarico A, Falcone G, Luca F, Buttafuoco G. 2018. Soil-gas radon anomalies in three study areas of Central-Northern Calabria (Southern Italy). Nat Hazard. 91: s 193–S219. doi: 10.1007/s11069-017-2839-x.
  • Jaishi HP, Singh S, Tiwari RP, Tiwari RC. 2014. Temporal variation of soil radon and thoron concentrations in Mizoram (India), associated with earthquakes. Nat Hazards. 72(2):443–454. doi: 10.1007/s11069-013-1020-4.
  • Jiang DY, Chen WB, Shi YL. 2000. [The crust degasification along Haiyuan active fault]. Northwest Seismol J. 22(4):447–464.
  • Jiang DY, Yan XC. 1990. Preliminary studies of fluid geochemical field on Haiyuan active fault. Seismol Geol. 12(1):63–68.
  • Kafadar K, Spiegelman CH. 1986. An alternative to ordinary Q-Q plots: conditional Q-Q plots. Comput Stat Data Anal. 4(3):167–184. doi: 10.1016/0167-9473(86)90032-0.
  • Kidner DB. 2003. Higher-order interpolation of regular grid digital elevation models. Int J Remote Sens. 24(14):2981–2987. doi: 10.1080/0143116031000086835.
  • King CY. 1986. Gas geochemistry applied to earthquake prediction: an overview. J Geophys Res. 91(B12):12269–12281. doi: 10.1029/JB091iB12p12269.
  • King CY, Zhang W, Zhang Z. 2006. Earthquake-induced groundwater and gas changes. Pure Appl Geophys. 163(4):633–645. doi: 10.1007/s00024-006-0049-7.
  • Lasserre C, Morel P‐H, Gaudemer Y, Tapponnier P, Ryerson FJ, King GC. P, Métivier F, Kasser M, Kashgarian M, Liu B, et al. 1999. Postglacial left slip rate and past occurrence of M ≥8 earthquakes on the Western Haiyuan Fault, Gansu, China. J Geophys Res. 104(B8):17633–17651. doi: 10.1029/1998JB900082.
  • Li Y, Du JG, Wang X, Zhou X, Xie C, Cui Y. 2013. Spatial variations of soil gas geochemistry in the Tangshan area of Northern China. Terr Atmos Ocean Sci. 24(3):323–333. doi: 10.3319/TAO.2012.11.26.01(TT).
  • Li Y, Shan X, Qu C, Zhang Y, Song X, Jiang Y, Zhang G, Nocquet JM, Gong W, Gan W, et al. 2017. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault, northeastern Tibetan Plateau. J Asian Earth Sci. 150:87–97. doi: 10.1016/j.jseaes.2017.10.010.
  • Liu BC, Zhou JX. 1985. [The prehistory major earthquake for Haiyuan active fault]. Seismol Geol. 7(4):11–21. Chinese.
  • Liu-Zeng J, Klinger Y, Xu X, Lasserre C, Chen G, Chen W, Tapponnier P, Zhang B. 2007. Millennial recurrence of large earthquakes on the Haiyuan Fault near Songshan, Gansu Province. China. B Seismol Soc Am. 97(1B):14–34. doi: 10.1785/0120050118.
  • Lombardi S, Voltattorni N. 2010. Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. App Geochem. 25(8):1206–1220. doi: 10.1016/j.apgeochem.2010.05.006.
  • Lu C, Li Y, Hu L, Zhao C, Liu ZF, Shao JJ, Chen Z. 2022. Study of the flux of soil gas Rn and its relation with seismicity in Tangshan Area. J. Seismol.Res. 45(2):241–248. Chinese.
  • Meng GK, He KM, Ban T, Jiao DC. 1997. Study on activity and segmentation of active fault using measurements of Radon and Mercury gases. Earthquake Res China. 13(1):43. 50. Chinese.
  • Negarestani A, Setayeshi S, Ghannadi-Maragheh M, Akashe B. 2002. Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction. J. Environ. Radioactiv. 62(3):225–233.
  • Naskar A, Akhter J, Gazi M, Mondal M, Deb A. 2023. Impact of meteorological parameters on soil radon at Kolkata, India: investigation using machine learning techniques. Environ. Sci. Pollut. R. 30(48):105374–105386.
  • Pizzino L, Burrato P, Quattrocchi F, Valensise G. 2004. Geochemical signatures of large active faults: the example of the 5 February 1783, Calabrian earthquake (southern Italy). J Seismol. 8(3):363–380. doi: 10.1023/B:JOSE.0000038455.56343.e7.
  • Prasetio R, Laksminingpuri N, Satrio S, Pujiindiyati ER, Pratikno B, Sidauruk P. 2023. The 222Rn and CO2 soil gas distribution at Lembang Fault Zone, West Java—Indonesia. J Environ Radioact. 257:107079. doi: 10.1016/j.jenvrad.2022.107079.
  • Scholz CH. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. B Seismol Soc Am. 58(1):399–415. doi: 10.1785/BSSA0580010399.
  • Song X, Jiang Y, Shan X, Gong W, Qu C. 2019. A Fine velocity and strain rate field of present-day crustal motion of the Northeastern Tibetan Plateau inverted jointly by InSAR and GPS. Remote Sens. 11(4):435. doi: 10.3390/rs11040435.
  • Su HJ, Zhang H, Li CH, Wu JB, Zhou HL. 2013. Geochemical features of fault Gas on Northern Margin Fault of Xiqinling and its seismic hazard analysis. China Earthquake Eng J. 35(3):371–676. Chinese.
  • Sundal AV, Valen V, Soldal O, Strand T. 2008. The influence of meteorological parameters on soil radon levels in permeable glacial sediments. Sci Total Environ. 389(2-3):418–428. doi: 10.1016/j.scitotenv.2007.09.001.
  • Sun H, Xu J, Liu HY. 2017.Depth present-day movement in the mid-eastern segment of Haiyuan fault zone based on InSAR. J Geod Geodyn. 37(11):1141–1145. doi: 10.14075/j.jgg.2017.11.009.Chinese.
  • Sun X, Wang GC, Shao ZG, Si X. 2016. Geochemical characteristics of emergent gas and groundwater in Haiyuan fault zone. Earth Sci Front. 23(3):140–150. doi: 10.13745/j.esf.2016.03.018.Chinese.
  • Sun X, Yang PT, Xiang Y, Si XY, Liu DL. 2017. Across-fault distributions of radon concentrations in soil gas for different tectonic environments. Geosci J. 22(2):227–239. doi: 10.1007/s12303-017-0028-2.
  • Sun Y, Zhou X, Yan Y, Li J, Fang W, Wang W, Liu Y. 2021. Soil degassing from the Xianshuihe–Xiaojiang fault system at the eastern boundary of the Chuan–Dian Rhombic Block, Southwest China. Front Earth Sci. 9:1–12. doi: 10.3389/feart.2021.635178.
  • Toutain JP, Baubron JC. 1999. Gas geochemistry and seismotectonics: a review. Tectonophysics. 304(1–2):1–27. doi: 10.1016/S0040-1951(98)00295-9.
  • Wang B, Cui FZ, Liu J, Zhou YS, Xu S, Shao YX. 2023. Fault gas observation and surface rupture feature interpretation of Ms 7.4 Madoi earthquake. Seismol Geol. 45(3):772–794. doi: 10.3969/j.issn.0253-4967.2023.03.010.Chinese.
  • Xin HL, Zeng XW, Kang M, Gao J. 2020. Crustal fine velocity structure of Haiyuan arcuate tectonic zone from double difference tomography. Chinese J Geophys. 63(3):897–914. doi: 10.6038/cjg2020N0067.
  • Yang Y, Li Y, Guan ZJ, Chen Z, Zhang L, Lv CJ, Sun FX. 2018. Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan, southwestern of China. Appl. Geochem. 89:23–33. doi: 10.1016/j.apgeochem.2017.11.006.
  • Yang Y, Li Y, Li Y, Ji L, Gong Y, Du F, Zhang L, Chen Z. 2021. Present-day activity of the Anninghe fault and Zemuhe fault, southeastern Tibetan Plateau, derived from soil gas CO2 emissions and locking degree. Earth Space Sci. 8(10):1–21. doi: 10.1029/2020EA001607.
  • Yi GX, Wen XZ, Xin H, Qiao HZ, Wang SW, Gong Y. 2013. Stress state and major earthquake risk on the southern segment of the Longmen Shan fault zone. Chin J Geophys. 56:1112–1120. doi: 10.6038/cjg20130407.Chinese.
  • Yuce G, Fu C, Alessandro W. 2017. Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea Fault and Karasu Faultin the Amik Basin (Hatay). Turkey. Chem Geol. 469:1–18. doi: 10.1016/j.chemgeo.2017.01.003.
  • Zhan Y, Yang J, Zhao G, Zhao L, Sun X. 2017. Deep electrical structure of crust bebeath the Madongshan step area at the Haiyuan fault in the northeastern margin of the Tibetan plateau and tectonic implications. Chin J Geophys. 60(6):2371–2384. doi: 10.6038/cjg2017062.Chinese.
  • Zhan Y, Zhao G, Chen XB, Tang J, Wang JJ, Deng QH. 2004. Crustal structure from magnetotelluric profiling in the Haiyuan earthquake area, Ningxia Hui Autonomous Region, China]. Chin J Geophys. 47(2):274–281. Chinese.
  • Zhang PZ, Molnar P, Burchfiel BC, Royden L, Yipeng W, Qidong D, Fangmin S, Weiqi Z, Decheng K. 1988. Bounds on the Holocene slip rate of the Haiyuan fault, North-Central China. Quat Res. 30(2):151–164. doi: 10.1016/0033-5894(88)90020-8.
  • Zhang W, Jiao D, Zhang PZ, Molnar P, Burchfiel BC, Deng Q, Wang Y, Song F. 1987. Displacement along the Haiyuan fault associated with the great 1920 Haiyuan. China, Earthquake. B Seismol Soc Am. 77:117–131.
  • Zhou X, Wang C, Chai C, et al. 2011. The geochemical charateristics of soil gas in the southeastern part of Hainyuan fault. Seismol Geol. 33(1):123–132. Chinese.
  • Zhou H, Su H, Zhang H, Li C. 2017. Correlations between soil gas and seismic activity in the Generalized Haiyuan Fault Zone, North-Central China. Nat Hazards. 85(2):763–776. doi: 10.1007/s11069-016-2603-7.
  • Zhou X, Du J, Chen Z, Cheng J, Tang Y, Yang L, Xie C, Cui Y, Liu L, Yi L, et al. 2010. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS 8.0 earthquake, southwestern China. Geochem Trans. 11(1):5. doi: 10.1186/1467-4866-11-5.