0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Robustness of machine learning algorithms to generate flood susceptibility maps for watersheds in Jordan

&
Article: 2378991 | Received 26 Mar 2024, Accepted 05 Jul 2024, Published online: 20 Jul 2024

References

  • Ababsa M, editor. 2013. Atlas of Jordan. In: Beyrouth: Presses de l’Ifpo. doi: 10.4000/books.ifpo.4560. Digital ISBN: 978-2-35159-438-4.
  • Abdelal Q, Al-Rawabdeh A, Al Qudah K, Hamarneh C, Abu-Jaber N. 2021. Hydrological assessment and management implications for the ancient Nabataean flood control system in Petra, Jordan. J Hydrol. 601:126583. doi: 10.1016/j.jhydrol.2021.126583.
  • Abu El-Magd SA, Maged A, Farhat HI. 2022. Hybrid-based Bayesian algorithm and hydrologic indices for flash flood vulnerability assessment in coastal regions: machine learning, risk prediction, and environmental impact. Environ Sci Pollut Res Int. 29(38):57345–57356. doi: 10.1007/s11356-022-19903-7.
  • Abu Islaih A, Yaghan R, Al Kuisi M, Al-Bilbisi H. 2020. Impact of climate change on flash floods using hydrological modelling and GIS: case study Zarqa Ma’in area. Int J Appl Nat Sci (IJANS). 9:29–52.
  • Al-Juaidi AEM, Nassar AM, Al-Juaidi OEM. 2018. Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arab J Geosci. 11(24):1–10. doi: 10.1007/s12517-018-4095-0.
  • Al-Taani A, Al-Husban Y, Ayan A. 2023. Assessment of potential flash flood hazards. Concerning land use/land cover in Aqaba Governorate, Jordan, using a multi-criteria technique. Egypt J Remote Sens Space Sci. 26(1):17–24. doi: 10.1016/j.ejrs.2022.12.007.
  • Askar S, Zeraat Peyma S, Yousef MM, Prodanova NA, Muda I, Elsahabi M, Hatamiafkoueieh J. 2022. Flood susceptibility mapping using remote sensing and integration of decision table classifier and metaheuristic algorithms. Water (Switzerland). 14(19):3062. doi: 10.3390/w14193062.
  • Avand M, Moradi H, Lasboyee MR. 2021. Spatial modeling of flood probability using geo-environmental variables and machine learning models, case study: Tajan watershed, Iran. Adv Space Res. 67(10):3169–3186. doi: 10.1016/j.asr.2021.02.011.
  • Bhattarai Y, Duwal S, Sharma S, Talchabhadel R. 2024. Leveraging machine learning and open-source spatial datasets to enhance flood susceptibility mapping in transboundary river basin. Int J Digit Earth. 17(1):1–24. doi: 10.1080/17538947.2024.2313857.
  • Bishop CM. 1995. Neural networks for pattern recognition CLARENDON PRESS • OXFORD 1995.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32. doi: 10.1023/A:1010933404324.
  • Bui DT, Khosravi K, Shahabi H, Daggupati P, Adamowski JF, Melesse M, Pham A, Pourghasemi BT, Mahmoudi HR, Bahrami M, et al. 2019. Flood spatial modeling in Northern Iran using remote sensing and GIS: a comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sens (Basel). 11(13):1589. doi: 10.3390/rs11131589.
  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K. 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Modell Software. 95:229–245. doi: 10.1016/j.envsoft.2017.06.012.
  • Chen J, Huang G, Chen W. 2021. Towards better flood risk management: assessing flood risk and investigating the potential mechanism based on machine learning models. J Environ Manage. 293:112810. doi: 10.1016/j.jenvman.2021.112810.
  • Chen J. 2023. Dynamic and loss analysis of flood inundation in the floodplain area of the lower Yellow River considering ecological impact. J Eng Appl Sci. 70(1):1–12. doi: 10.1186/s44147-023-00197-6.
  • Cortes C, Vapnik V. 1995. Support-vector networks editor. Mach Learn. 20(3):273–297. doi: 10.1007/BF00994018.
  • Costabile P, Costanzo C, Ferraro D, Barca P. 2021. Is HEC-RAS 2D accurate enough for storm-event hazard assessment? Lessons learnt from a benchmarking study based on rain-on-grid modelling. J Hydrol (Amst). 603:126962. doi: 10.1016/j.jhydrol.2021.126962.
  • Darabi H, Choubin B, Rahmati O, Torabi Haghighi A, Pradhan B, Kløve B. 2019. Urban flood risk mapping using the GARP and QUEST models: a comparative study of machine learning techniques. J Hydrol (Amst). 569:142–154. doi: 10.1016/j.jhydrol.2018.12.002.
  • Deroliya P, Ghosh M, Mohanty MP, Ghosh S, Rao KHVD, Karmakar S. 2022. A novel flood risk mapping approach with machine learning considering geomorphic and socio-economic vulnerability dimensions. Sci Total Environ. 851(Pt 1):158002. doi: 10.1016/j.scitotenv.2022.158002.
  • Duwal S, Liu D, Pradhan PM. 2023. Flood susceptibility modeling of the Karnali river basin of Nepal using different machine learning approaches. Geomat Nat Hazards Risk. 14(1):1–25. doi: 10.1080/19475705.2023.2217321.
  • Edamo ML, Ukumo TY, Lohani TK, Ayana MT, Ayele MA, Mada ZM, Abdi DM. 2022. A comparative assessment of multi-criteria decision-making analysis and machine learning methods for flood susceptibility mapping and socio-economic impacts on flood risk in Abela-Abaya floodplain of Ethiopia. Environ Challenges. 9:100629. doi: 10.1016/j.envc.2022.100629.
  • Fang L, Huang J, Cai J, Nitivattananon V. 2022. Hybrid approach for flood susceptibility assessment in a flood-prone mountainous catchment in China. J Hydrol (Amst). 612:128091. doi: 10.1016/j.jhydrol.2022.128091.
  • Farhadi H, Najafzadeh M. 2021. Flood risk mapping by remote sensing data and random forest technique. Water (Switzerland). 13(21):3115. doi: 10.3390/w13213115.
  • Farhan Y, Ayed A. 2017. Assessment of flash-flood hazard in arid watersheds of Jordan. JGIS. 09(06):717–751. doi: 10.4236/jgis.2017.96045.
  • Ferraro D, Costabile P, Costanzo C, Petaccia G, Macchione F. 2020. A spectral analysis approach for the a priori generation of computational grids in the 2-D hydrodynamic-based runoff simulations at a basin scale. J Hydrol (Amst). 582:124508. doi: 10.1016/j.jhydrol.2019.124508.
  • Gudiyangada Nachappa T., Tavakkoli Piralilou, S., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., Blaschke, T., 2020. Flood susceptibility mapping with machine learning, multicriteria decision analysis and ensemble using Dempster Shafer Theory. J Hydrol (Amst). https://doi.org/10.1016/j.jhydrol.2020.125275.
  • Hasanuzzaman M, Islam A, Bera B, Shit PK. 2022. A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (tropical river, India). Phys Chem Earth. 127:103198. doi: 10.1016/j.pce.2022.103198.
  • Khosravi K, Pham BT, Chapi K, Shirzadi A, Shahabi H, Revhaug I, Prakash I, Tien Bui D. 2018. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ. 627:744–755. doi: 10.1016/j.scitotenv.2018.01.266.
  • Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A. 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci. 67(1):251–264. doi: 10.1007/s12665-011-1504-z.
  • Li Y, Hong H. 2023. Modelling flood susceptibility based on deep learning coupling with ensemble learning models. J Environ Manage. 325(Pt A):116450. doi: 10.1016/j.jenvman.2022.116450.
  • Li Z, Liu H, Luo C, Fu G. 2021. Assessing surface water flood risks in urban areas using machine learning. Water (Switzerland). 13(24):3520. doi: 10.3390/w13243520.
  • Liao M, Wen H, Yang L, Wang G, Xiang X, Liang X. 2024. Improving the model robustness of flood hazard mapping based on 2 hyperparameter optimization of random forest.
  • Liu J, Wang J, Xiong J, Cheng W, Li Y, Cao Y, He Y, Duan Y, He W, Yang G. 2022. Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the belt and road region. Geocarto Int. 37(25):9817–9846. doi: 10.1080/10106049.2022.2025918.
  • Mahdizadeh Gharakhanlou N, Perez L. 2023. Flood susceptible prediction through the use of geospatial variables and machine learning methods. J Hydrol (Amst). 617:129121. doi: 10.1016/j.jhydrol.2023.129121.
  • Mansfield ER, Helms BP. 1982. Detecting multicollinearity. Am Stat. 36(3a):158–160. doi: 10.1080/00031305.1982.10482818.
  • Marco Z, Elena A, Anna S, Silvia T, Andrea C. 2022. Spatio-temporal cross-validation to predict pluvial flood events in the metropolitan city of Venice. J Hydrol (Amst). 612:128150. doi: 10.1016/j.jhydrol.2022.128150.
  • Mehravar S, Razavi-Termeh SV, Moghimi A, Ranjgar B, Foroughnia F, Amani M. 2023. Flood susceptibility mapping using multi-temporal SAR imagery and novel integration of nature-inspired algorithms into support vector regression. J Hydrol (Amst). 617:129100. doi: 10.1016/j.jhydrol.2023.129100.
  • Meliho M, Khattabi A, Driss Z, Orlando CA. 2022. Spatial prediction of flood-susceptible zones in the Ourika watershed of Morocco using machine learning algorithms. ACI. vol (ahed-of-print):1–13. doi: 10.1108/ACI-09-2021-0264.
  • Mousavi SM, Ataie-Ashtiani B, Hosseini SM. 2022. Comparison of statistical and MCDM approaches for flood susceptibility mapping in northern Iran. J Hydrol (Amst). 612:128072. doi: 10.1016/j.jhydrol.2022.128072.
  • Muhury N, Apan AA, Marasani TN, Ayele GT. 2022. Modelling floodplain vegetation response to groundwater variability using the ArcSWAT hydrological model, MODIS NDVI data, and machine learning. Land (Basel). 11(12):2154. doi: 10.3390/land11122154.
  • Nguyen HD. 2022. GIS-based hybrid machine learning for flood susceptibility prediction in the Nhat Le–Kien Giang watershed, Vietnam. Earth Sci Inform. 15(4):2369–2386. doi: 10.1007/s12145-022-00825-4.
  • Pham BT, Jaafari A, Phong TV, Yen HPH, Tuyen TT, Luong V, Van Nguyen HD, Le H, Foong LK. 2021a. Improved flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques. Geosci Front. 12(3):101105. doi: 10.1016/j.gsf.2020.11.003.
  • Pham BT, Luu C, Phong TV, Nguyen HD, Le HV, Tran TQ, Ta HT, Prakash I. 2021b. Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. J Hydrol (Amst). 592:125815. doi: 10.1016/j.jhydrol.2020.125815.
  • Plataridis K, Mallios Z. 2023. Flood susceptibility mapping using hybrid models optimized with Artificial Bee Colony. J Hydrol (Amst). 624:129961. doi: 10.1016/j.jhydrol.2023.129961.
  • Pradhan A. 2012. Support vector machine-a survey. Int J Emerg Tech Adv Eng. 2:82–85.
  • Pradhan B, Lee S, Dikshit A, Kim H. 2023. Spatial flood susceptibility mapping using an explainable artificial intelligence (XAI) model. Geosci Front. 14(6):101625. doi: 10.1016/j.gsf.2023.101625.
  • Razavi-Termeh SV, Sadeghi-Niaraki A, Seo MB, Choi SM. 2023. Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery. Sci Total Environ. 873:162285. doi: 10.1016/j.scitotenv.2023.162285.
  • Saber M, Boulmaiz T, Guermoui M, Abdrabo KI, Kantoush SA, Sumi T, Boutaghane H, Hori T, Binh DV, Nguyen BQ, et al. 2023. Enhancing flood risk assessment through integration of ensemble learning approaches and physical-based hydrological modeling. Geomatics Nat Hazards Risk. 14(1):1–38. doi: 10.1080/19475705.2023.2203798.
  • Sachdeva S, Kumar B. 2022. Flood susceptibility mapping using extremely randomized trees for Assam 2020 floods. Ecol Inform. 67:101498. doi: 10.1016/j.ecoinf.2021.101498.
  • Saikh NI, Mondal P. 2023. GIS-based machine learning algorithm for flood susceptibility analysis in the Pagla river basin, Eastern India. Natural Hazards Res. 3(3):420–436. doi: 10.1016/j.nhres.2023.05.004.
  • Seleem O, Ayzel G, de Souza ACT, Bronstert A, Heistermann M. 2022. Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany. Geomat Nat Hazards Risk. 13(1):1640–1662. doi: 10.1080/19475705.2022.2097131.
  • Seleem O, Heistermann M, Bronstert A. 2021. Efficient hazard assessment for pluvial floods in urban environments: a benchmarking case study for the city of Berlin, Germany. Water (Switzerland). 13(18):2476. doi: 10.3390/w13182476.
  • Taromideh F, Fazloula R, Choubin B, Emadi A, Berndtsson R. 2022. Urban flood-risk assessment: integration of decision-making and machine learning. Sustainability (Switzerland). 14(8):4483. doi: 10.3390/su14084483.
  • Tehrany MS, Pradhan B, Jebur MN. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol (Amst). 512:332–343. doi: 10.1016/j.jhydrol.2014.03.008.
  • Towfiqul Islam ARM, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A, Linh NTT. 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front. 12(3):101075. doi: 10.1016/j.gsf.2020.09.006.
  • Wang Z, Lai C, Chen X, Yang B, Zhao S, Bai X. 2015. Flood hazard risk assessment model based on random forest. J Hydrol (Amst). 527:1130–1141. doi: 10.1016/j.jhydrol.2015.06.008.
  • Youssef AM, Pourghasemi HR, El-Haddad BA. 2022. Advanced machine learning algorithms for flood susceptibility modeling—performance comparison: red Sea, Egypt. Environ Sci Pollut Res Int. 29(44):66768–66792. doi: 10.1007/s11356-022-20213-1.
  • Youssef AM, Pradhan B, Sefry SA. 2016. Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ Earth Sci. 75(1):16. doi: 10.1007/s12665-015-4830-8.