127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A semi-quantitative multi-hazard risk assessment framework for European coastal urban areas

, , , , &
Article: 2378994 | Received 25 Jan 2024, Accepted 05 Jul 2024, Published online: 17 Jul 2024

References

  • Alfieri L, Salamon P, Bianchi A, Neal J, Bates P, Feyen L. 2014. Advances in pan‐European flood hazard mapping. Hydrol Process. 28(13):4067–4077. doi: 10.1002/hyp.9947.
  • Althuwaynee OF, Pradhan B. 2017. Semi-quantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City. Geomatics, Nat Hazards Risk. 8(2):706–732. doi: 10.1080/19475705.2016.1255670.
  • ARPA Piemonte. 2023. Agenzia Regionale per la Protezione Ambientale del Piemonte – Fenomeni meteo – Pioggia. https://www.arpa.piemonte.it/rischinaturali/approfondimenti/pericoli-meteo/fenomeni_meteo/pioggia.html.
  • Barnard C. 2022. UTCI – User Guide. https://confluence.ecmwf.int/display/CEMS/UTCI+-+User+Guide.
  • Bartolini G, Magno R, Vallorani R, Petralli M, Massetti L. 2012. Clima che cambia – uno sguardo sulla Toscana. Sesto Fiorentino: Consorzio LaMMA.
  • Bashfield A, Keim A. 2011. Continent-wide DEM creation for the European Union. In 34th Int Symp Remote Sens Environ. Sydney: International Society for Photogrammetry and Remote Sensing.
  • Bates PD. 2022. Flood inundation prediction. Annu Rev Fluid Mech. 54(1):287–315. doi: 10.1146/annurev-fluid-030121-113138.
  • Błażejczyk K, Broede P, Fiala D, Havenith G, Holmér I, Jendritzky G, Kampmann B, Kunert A. 2010. Principles of the new universal thermal climate index (UTCI) and its application to bioclimatic research in European scale. Misc Geogr. 14(1):91–102. doi: 10.2478/mgrsd-2010-0009.
  • Bündnis Entwicklung Hilft. 2021. Methodological Notes of the WorldRiskIndex: edition 2021.
  • Büttner G, Kosztra B, Maucha G, Pataki R, Kleeschulte S, Hazeu G, Vittek M, Schröder C, Littkop A. 2021. CORINE Land Cover User Manual.
  • Carpignano A, Golia E, Di Mauro C, Bouchon S, Nordvik J. 2009. A methodological approach for the definition of multi‐risk maps at regional level: first application. J Risk Res. 12(3-4):513–534. doi: 10.1080/13669870903050269.
  • Chen K, McAneney J, Blong R, Leigh R, Hunter L, Magill C. 2004. Defining area at risk and its effect in catastrophe loss estimation: a dasymetric mapping approach. Appl Geogr. 24(2):97–117. doi: 10.1016/j.apgeog.2004.03.005.
  • Crowley H, Despotaki V, Rodrigues D, Silva V, Toma-Danila D, Riga E, Karatzetzou A, Fotopoulou S, Zugic Z, Sousa L, et al. 2020. Exposure model for European seismic risk assessment. Earthq Spectra. 36(1_suppl):252–273. doi: 10.1177/8755293020919429.
  • Dottori F, Alfieri L, Bianchi A, Lorini V, Feyen L, Salamon P. 2016. River flood hazard maps for Europe – version 1. http://data.europa.eu/89h/8e49997c-ba99-4ed1-9aec-059bb440001b.
  • Dottori F, Alfieri L, Bianchi A, Skoien J, Salamon P. 2021. River Flood Hazard Maps for Europe and the Mediterranean Basin Region. European Commission, Joint Research Centre (JRC). doi: 10.2905/1D128B6C-A4EE-4858-9E34-6210707F3C81.
  • Dottori F, Alfieri L, Bianchi A, Skoien J, Salamon P. 2022. A new dataset of river flood hazard maps for Europe and the Mediterranean Basin. Earth Syst Sci Data. 14(4):1549–1569. doi: 10.5194/essd-14-1549-2022.
  • Dottori F, Figueiredo R, Martina M, Molinari D, Scorzini AR. 2016. INSYDE: a synthetic, probabilistic flood damage model based on explicit cost analysis. Nat Hazards Earth Syst Sci. 16(12):2577–2591. doi: 10.5194/nhess-16-2577-2016.
  • Dutta D, Herath S, Musiake K. 2003. A mathematical model for flood loss estimation. J Hydrol. 277(1-2):24–49. doi: 10.1016/S0022-1694(03)00084-2.
  • Emberson R, Kirschbaum D, Stanley T. 2020. New global characterisation of landslide exposure. Nat Hazards Earth Syst Sci. 20(12):3413–3424. doi: 10.5194/nhess-20-3413-2020.
  • European Commission. 2021. Commission Delegated Regulation (EU) 2021/2139 of 4 June 2021. Off J Eur Union. 442(09.12.2021):1–349. http://data.europa.eu/eli/reg_del/2021/2139/oj.
  • European Commission. 2023. EU Taxonomy Navigator. https://ec.europa.eu/sustainable-finance-taxonomy/home.
  • Eurostat. 2008. NACE Rev. 2 – Statistical classification of economic activities in the European Community. Luxembourg: Office for Official Publications of the European Communities.
  • Figueiredo R, Martina M. 2016. Using open building data in the development of exposure data sets for catastrophe risk modelling. Nat Hazards Earth Syst Sci. 16(2):417–429. doi: 10.5194/nhess-16-417-2016.
  • Figueiredo R, Romão X, Paupério E. 2020. Flood risk assessment of cultural heritage at large spatial scales: framework and application to mainland Portugal. J Cult Herit. 43:163–174. doi: 10.1016/j.culher.2019.11.007.
  • Fraser S, Douglas J, Simpson A, Fraser S, Kuijper M, Winsemius H, Burzel A, Hohmann A, Taillefer N, Jacon F, et al. 2017. ThinkHazard! Identify natural hazards in your project area and understand how to reduce their impact. Methodology report. Updated for ThinkHazard! Version 2. http://thinkhazard.org/static/documents/thinkhazard-methodology-report_v2_0.pdf.
  • Galasso C, Pregnolato M, Parisi F. 2021. A model taxonomy for flood fragility and vulnerability assessment of buildings. Int J Disaster Risk Reduct. 53:101985. doi: 10.1016/j.ijdrr.2020.101985.
  • Gründemann G, Zorzetto E, Beck H, Schleiss M, Giesen NVd, Marani M, Ent R v d 2021. GPEX: global Precipitation EXtremes. doi: 10.4121/12764429.v4.
  • Gründemann GJ, Zorzetto E, Beck HE, Schleiss M, van de Giesen N, Marani M, van der Ent RJ. 2023. Extreme precipitation return levels for multiple durations on a global scale. J Hydrol. 621(July 2022):129558. doi: 10.1016/j.jhydrol.2023.129558.
  • Güneş S, Efe B. 2022. Samsun İli için Sıcak Hava ve Soğuk Hava Dalgalarının Zamansal Analizleri. Doğal Afetler ve Çevre Derg. 8(2):359–367. doi: 10.21324/dacd.1064235.
  • Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J. 2013. Future flood losses in major coastal cities. Nature Clim Change. 3(9):802–806. doi: 10.1038/nclimate1979.
  • Möller V, van Diemen R, Matthews JBR. 2022. Annex II: glossary. [C. Méndez, S. Semenov, J.S. Fuglestvedt, A. Reisinger (eds.)]. In: clim Chang 2022 Impacts, Adapt Vulnerability Contrib Work Gr II to Sixth Assess Rep Intergov Panel Clim Chang. Cambridge, UK and New York, NY: Cambridge University Press; p. 2897–2930. doi: 10.1017/9781009325844.029.
  • Jendritzky G, de Dear R, Havenith G. 2012. UTCI – Why another thermal index? Int J Biometeorol. 56(3):421–428. doi: 10.1007/s00484-011-0513-7.
  • Kappes MS, Keiler M, von Elverfeldt K, Glade T. 2012. Challenges of analyzing multi-hazard risk: a review. Nat Hazards. 64(2):1925–1958. doi: 10.1007/s11069-012-0294-2.
  • Kappes MS, Papathoma-Köhle M, Keiler M. 2012. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl Geogr. 32(2):577–590. doi: 10.1016/j.apgeog.2011.07.002.
  • Kaynia AM, Papathoma-Köhle M, Neuhäuser B, Ratzinger K, Wenzel H, Medina-Cetina Z. 2008. Probabilistic assessment of vulnerability to landslide: application to the village of Lichtenstein, Baden-Württemberg, Germany. Eng Geol. 101(1-2):33–48. doi: 10.1016/j.enggeo.2008.03.008.
  • Kumer P, Meulenberg C, Kralj E. 2022. Challenges for planning climate change resilience through the co-creation living lab approach in the Mediterranean coastal town of Piran. J Geogr. 17(2):89–106. doi: 10.18690/rg.17.2.2737.
  • Laino E, Iglesias G. 2023a. Extreme climate change hazards and impacts on European coastal cities: a review. Renew Sustain Energy Rev. 184(July):113587. doi: 10.1016/j.rser.2023.113587.
  • Laino E, Iglesias G. 2023b. High-level characterisation and mapping of key climate-change hazards in European coastal cities. Nat Hazards. 120(4):3623–3659. doi: 10.1007/s11069-023-06349-4.
  • Lenôtre N, Thierry P, Batkowski D, Vermeersch F. 2004. EUROSION project – The Coastal Erosion Layer - WP 2.6.
  • Marin-Ferrer M, Venaccini L, Polljansek K. 2017. INFORM – Index for Risk Management. Concept and Methodology 2017. Luxembourg: Publications Office of the European Union. doi: 10.2760/094023.
  • Marosz K. 2007. Studies on historical floods in Gdańsk (a methodological background). Geogr Pol. 80(2):111–116.
  • McGranahan G, Balk D, Anderson B. 2007. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban. 19(1):17–37. doi: 10.1177/0956247807076960.
  • Merz B, Kreibich H, Schwarze R, Thieken A. 2010. Review article “Assessment of economic flood damage.”. Nat Hazards Earth Syst Sci. 10(8):1697–1724. doi: 10.5194/nhess-10-1697-2010.
  • Messner F, Penning-Rowsell E, Green C, Meyer V, Tunstall S, Veen A v d 2007. Evaluating flood damages: guidance and recommendations on principles and methods. [place unknown]: FLOODsite Project Deliverable D9.1.
  • Muis S, Verlaan M, Winsemius HC, Aerts JCJH, Ward PJ. 2016. A global reanalysis of storm surges and extreme sea levels. Nat Commun. 7:11969. doi: 10.1038/ncomms11969.
  • Di Napoli C, Pappenberger F, Cloke HL. 2019. Verification of heat stress thresholds for a health-based heat-wave definition. J Appl Meteorol Climatol. 58(6):1177–1194. doi: 10.1175/JAMC-D-18-0246.1.
  • Nikolova M. 2021. Slovenia’s coastal gem becomes an open lab seeking solutions to climate change. Emerg Eur. https://emerging-europe.com/after-hours/slovenias-coastal-gem-becomes-an-open-lab-seeking-solutions-to-climate-change/.
  • OECD. 2008. Handbook on Constructing Composite Indicators: Methodology and User Guide. https://www.oecd.org/els/soc/handbookonconstructingcompositeindicatorsmethodologyanduserguide.htm.
  • OSM. 2023. OpenStreetMap. https://www.openstreetmap.org/.
  • Palla A, Colli M, Candela A, Aronica GT, Lanza LG. 2018. Pluvial flooding in urban areas: the role of surface drainage efficiency. J Flood Risk Management. 11(S2):S663–S676. doi: 10.1111/jfr3.12246.
  • Poljanšek K, Casajus Valles A, Marin Ferrer M, De Jager A, Dottori F, Galbusera L, Garcia Puerta B, Giannopoulos G, Girgin S, Hernandez Ceballos M, et al. 2019. Recommendations for national risk assessment for disaster risk management in EU. Luxembourg: Publications Office of the European Union. doi: 10.2760/084707.
  • Poljanšek K, Ferrer MM, De Groeve T, Clark I. 2017. Science for disaster risk management 2017: knowing better and losing less. Luxembourg: Publications Office of the European Union.
  • Pyatkova K, Chen AS, Butler D, Vojinović Z, Djordjević S. 2019. Assessing the knock-on effects of flooding on road transportation. J Environ Manage. 244(January):48–60. doi: 10.1016/j.jenvman.2019.05.013.
  • Reder A, Raffa M, Padulano R, Rianna G, Mercogliano P. 2022. Characterizing extreme values of precipitation at very high resolution: an experiment over twenty European cities. Weather Clim Extrem. 35:100407. doi: 10.1016/j.wace.2022.100407.
  • Rentschler J, Salhab M. 2020. People in Harm’s Way: Flood Exposure and Poverty in 189 Countries. https://openknowledge.worldbank.org/handle/10986/34655.
  • Robinson PJ. 2001. On the definition of a heat wave. J Appl Meteor. 40(4):762–775. doi: 10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2.
  • Schär C, Jendritzky G. 2004. Hot news from summer 2003. Nature. 432(7017):559–560. doi: 10.1038/432559a.
  • Shahdani FJ, Santamaria-Ariza M, Sousa HS, Coelho M, Matos JC. 2022. Assessing flood indirect impacts on road transport networks applying mesoscopic traffic modelling: the case study of Santarém, Portugal. Appl Sci. 12(6):3076. doi: 10.3390/app12063076.
  • Stanley T, Kirschbaum DB. 2017. A heuristic approach to global landslide susceptibility mapping. Nat Hazards. 87(1):145–164. doi: 10.1007/s11069-017-2757-y.
  • Stevens FR, Gaughan AE, Linard C, Tatem AJ. 2015. Disaggregating census data for population mapping using Random forests with remotely-sensed and ancillary data. PLoS One. 10(2):e0107042. doi: 10.1371/journal.pone.0107042.
  • Tatem AJ. 2017. WorldPop, open data for spatial demography. Sci Data. 4(1):170004. doi: 10.1038/sdata.2017.4.
  • United Nations. 2015. Sendai Framework for Disaster Risk Reduction 2015–2030. [place unknown]: United Nations Office for Disaster Risk Reduction (UNISDR). https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf.
  • Vahtar M. 2003. EUROSION Case Study – Slovenia Coast (Slovenia). http://www.eurosion.org/index.html%5Cnhttp://www.eurosion.org/index.html.
  • Vousdoukas MI, Bouziotas D, Giardino A, Bouwer LM, Mentaschi L, Voukouvalas E, Feyen L. 2018. Understanding epistemic uncertainty in large-scale coastal flood risk assessment for present and future climates. Nat Hazards Earth Syst Sci. 18(8):2127–2142. doi: 10.5194/nhess-18-2127-2018.
  • Vousdoukas MI, Voukouvalas E, Mentaschi L, Dottori F, Giardino A, Bouziotas D, Bianchi A, Salamon P, Feyen L. 2016. Developments in large-scale coastal flood hazard mapping. Nat Hazards Earth Syst Sci. 16(8):1841–1853. doi: 10.5194/nhess-16-1841-2016.
  • Ward PJ, Winsemius HC, Kuzma S, Bierkens MFP, Bouwman A, Moel HD, Loaiza AD, Eilander D, Englhardt J, Erkens G, et al. 2020. Aqueduct Floods Methodology. Washington, D.C. www.wri.org/publication/aqueduct-floods-methodology.
  • Wilde M., Günther A, Reichenbach P, Malet J-P, Hervás J. 2018. Pan-European landslide susceptibility mapping: ELSUS Version 2. J Maps. 14(2):97–104. doi: 10.1080/17445647.2018.1432511.
  • Woloszyn E. 2003. The Catastrophic Flood in Gdansk on July 2001. In: Arsov R, Marsalek J, Watt E, Zeman E, editors. Urban Water Manag Sci Technol Serv Deliv. Dordrecht: Springer; p. 115–124. doi: 10.1007/978-94-010-0057-4_12.
  • WorldPop. 2023. Top-down estimation modelling: Constrained vs Unconstrained. https://www.worldpop.org/methods/top_down_constrained_vs_unconstrained/.
  • Ying X, Ni T, Lu M, Li Z, Lu Y, Bamisile O, Pelling M. 2023. Sub-catchment-based urban flood risk assessment with a multi-index fuzzy evaluation approach: a case study of Jinjiang district, China. Geomatics, Nat Hazards Risk. 14(1):173. doi: 10.1080/19475705.2023.2182173.
  • Zhang D, Shi X, Xu H, Jing Q, Pan X, Liu T, Wang H, Hou H. 2020. A GIS-based spatial multi-index model for flood risk assessment in the Yangtze River Basin, China. Environ Impact Assess Rev. 83(January):106397. doi: 10.1016/j.eiar.2020.106397.