1,531
Views
7
CrossRef citations to date
0
Altmetric
Articles

Identification of a yeast strain as a potential stuck wine fermentation restarter: a kinetic characterization

Identificatiόn de una cepa de levadura con potencial de reiniciar fermentaciones vínicas estancadas: una caracterizaciόn cinética

, , , , , , & show all
Pages 1-8 | Received 09 Dec 2012, Accepted 05 Feb 2013, Published online: 24 May 2013

References

  • Alexandre, H., & Charpentier, C. (1998). Biochemical aspects of stuck and sluggish fermentation in grape must. Journal of Industrial Microbiology and Biotechnology, 20, 20–27.
  • Ansanay-Galeote, V., Blondin, B., Dequin, S., & Sablayrolles, J. M. (2001). Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnology Letters, 23, 677–681.
  • Asenstorfer, R. E., Markides, A. J., Iland, P. G., & Jones, G. P. (2003). Formation of vitisin A during red wine fermentation and maturation. Australian Journal of Grape and Wine Research, 9, 40–46.
  • Belloch, C., Orlic, S., Barrio, E., & Querol, A. (2008). Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. International Journal of Food Microbiology, 122, 188–195.
  • Beltran, G., Rozès, N., Mas, A., & Guillamón, J. M. (2007). Effect of low-temperature fermentation on yeast nitrogen metabolism. World Journal of Microbiology and Biotechnology, 23, 809–815.
  • Berthels, N. J., Cordero-Otero, R. R., Bauer, F. F., Pretorius, I. S., & Thevelein, J. M. (2008). Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Applied Microbiology and Biotechnology, 77, 1083–1091.
  • Berthels, N. J., Cordero-Otero, R. R., Bauer, F. F., Thevelein, J. M., & Pretorius, I. S. (2004). Discrepancy in glucose and fructose utilization during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Research, 4, 683–689.
  • Bisson, L. F. (1999). Stuck and sluggish fermentations. American Journal of Enology and Viticulture, 50, 107–119.
  • Bisson, L. F., & Butzke, C. E. (2000). Diagnosis and rectification of stuck and sluggish fermentations. American Journal of Enology and Viticulture, 51, 168–177.
  • Carrasco, P., Querol, A., & Del Olmo, M. (2001). Analysis of the stress resistance of commercial wine yeast strains. Archives of Microbiology, 175, 450–457.
  • Cavazza, A., Poznanski, E., & Trioli, G. (2004). Restart of fermentation of simulated stuck wines by direct inoculation of active dry yeast. American Journal of Enology and Viticulture, 55, 160–167.
  • Chaney, D., Rodriguez, S., Fugelsang, K., & Thornton, R. (2006). Managing high-density commercial scale wine fermentations. Journal of Applied Microbiology, 100, 689–698.
  • Chi, Z., & Arneborg, N. (1999). Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants and ethanol tolerance in Saccharomyces cerevisiae. Journal of Applied Microbiology, 86, 1047–1052.
  • Ciani, M., & Maccarelli, F. (1998). Oenological properties of non-Saccharomyces yeasts associated with wine-making. World Journal of Microbiology and Biotechnology, 14, 199–203.
  • Dombek, K. M., & Ingram, L. O. (1986). Magnesium limitation and its role in apparent toxicity of ethanol in yeast fermentation. Applied and Environmental Microbiology, 52, 975–981.
  • Esteve-Zarzoso, B., Belloch, C., Uruburu, F., & Querol, A. (1999). Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. International Journal of Systematic Bacteriology, 49, 329–337.
  • Fernández-Espinar, M. T., Esteve-Zarzoso, B., Querol, A., & Barrio, E. (2000). RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: A fast method for species identification and the differentiation of flor yeasts. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 78, 87–97.
  • Fiore, C., Arrizon, J., Gschaedler, A., Flores, J., & Romano, P. (2005). Comparison between yeasts from grape and agave musts for traits of technological interest. World Journal of Microbiology and Biotechnology, 21, 1141–1147.
  • Flood, A. E., Johns, M. R., & White, E. T. (1996). Mutarotation of D-fructose in aqueous-ethanolic solutions and its influence on crystallization. Carbohydrate Research, 288, 45–56.
  • Guillamón, J. M., Sabaté, J., Barrio, E., Cano, J., & Querol, A. (1998). Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Archives of Microbiology, 169, 387–392.
  • Guillaume, C., Delobel, P., Sablayrollles, J. M., & Blondin, B. (2007). Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: A mutated HXT3 allele enhances fructose fermentation. Applied and Environmental Microbiology, 73, 2432–2439.
  • Ingram, L. O., & Buttke, T. M. (1984). Effects of alcohols on microorganisms. Advances in Microbial Physiology, 25, 253–300.
  • Ivorra, C., Pérez-Ortín, J. E., & Del Olmo, M. (1999). An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnology and Bioengineering, 64, 698–708.
  • Leao, C., & Van Uden, N. (1982). Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnology Letters, 4, 721–724.
  • López, M. G., Mancilla-Margalli, N. A., & Mendoza-Díaz, G. (2003). Molecular structures of fructans from Agave tequilana Weber var. Azul. Journal of Agricultural and Food Chemistry, 51, 7835–7840.
  • Mancilla-Margalli, N. A., & López, M. G. (2002). Generation of Maillard Compounds from Inulin during the Thermal Processing of Agave tequilana Weber Var. azul. Journal of Agricultural and Food Chemistry, 50, 806–812.
  • Martell-Nevárez, M. A., Córdova-Gurrola, E., Soto-Cruz, N. O., Favela-Torres, E., López-Pérez, M. G., & Rutiaga-Quiñones, O. M. (2011). Effect of fermentation temperature on chemical composition of mezcals produced with juice of Agave duranguensis using different genera of native yeast. African Journal of Microbiology Research, 4, 3669–3676.
  • Mauricio, J. C., Guijo, S., & Ortega, J. M. (1991). Relationship between phospholipid and sterol content in Saccharomyces cerevisiae and Torulaspora delbrueckii and their fermentation activity in grape musts. American Journal of Enology and Viticulture, 42, 301–308.
  • Michel-Cuello, M., Juarez-Flores, B., Aguirre-Rivera, J., & Pinos-Rodriguez, J. (2008). Quantitative characterization of nonstructural carbohydrates of mezcal agave (Agave salmiana otto ex salmdick). Journal of Agricultural and Food Chemistry, 56, 5753–5757.
  • Miller, G. L., Blum, R., Glennon, W. E., & Burton, A. L. (1960). Measurement of carboxymethylcellulase activity. Analitical Biochemistry, 2, 127–132.
  • Pampulha, M. A., & Loureiro-Dias, M. C. (1990). Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Applied Microbiology and Biotechnology, 34, 375–380.
  • Perez, M., Luyten, K., Michel, R., Riou, C., & Blondin, B. (2005). Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: Both low- and high-affinity HXT transporters are expressed. FEMS Yeast Research, 5, 351–361.
  • Pérez-Coello, M. S., Briones-Pérez, A. I., Ubeda-Iranzo, J. F., & Martin-Alvarez, P. J. (1999). Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region. Food Microbiology, 16, 563–573.
  • Pina, C., Goncalves, P., Prista, C., & Loureiro-Dias, M. C. (2004). Ffz1, a new transporter specific for fructose from Zygosaccharomyces bailii. Microbiology, 150, 2429–2433.
  • Pretorius, I. (2000). Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast, 16, 675–729.
  • Querol, A., Barrio, E., & Ramón, D. (1994). Population dynamics of wine yeast strains in natural fermentation. International Journal of Food Microbiology, 21, 315–323.
  • Reifenberger, E., Boles, E., & Ciriacy, M. (1997). Kinetic Characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. European Journal of Biochemistry, 245, 324–333.
  • Reifenberger, E., Freidel, K., & Ciriacy, M. (1995). Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Molecular Microbiology, 16, 157–167.
  • Salmon, J. M. (1989). Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Applied and Environmental Microbiology, 55, 953–958.
  • Salmon, J. M., Vincent, O., Mauricio, J. C., Bely, M., & Barre, P. (1993). Sugar transport inhibition and apparent lost of activity in Saccharomyces cerevisiae as a major limiting factor of enological fermentations. American Journal of Enology and Viticulture, 44, 56–64.
  • Santos, J., Sousa, M. J., Cardoso, H., Inácio, J., Silva, S., Spencer-Martins, I., & Leao, C. (2008). Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations. Microbiology, 154, 422–430.
  • Sousa, M. J., Miranda, L., Côrte-Real, M., & Leão, C. (1996). Transport of acetic acid in Zygosaccharomyces bailii: Effects of ethanol and their implications on the resistance of the yeast to acidic environments. Applied and Environmental Microbiology, 62, 3152–3315.
  • Torresi, S., Frangipane, M. T., & Anelli, G. (2011). Biotechnologies in sparkling wine production. Interesting approaches for quality improvement: A review. Food Chemistry, 129, 1232–1241.
  • Tronchoni, J., Gamero, A., Arroyo-López, F. N., Barrio, E., & Querol, A. (2009). Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. International Journal of Food Microbiology, 134, 237–243.
  • Van de Lagemaat, J., & Pyle, D. L. (2005). Modelling the uptake and growth kinetics of Penicillium glabrum in a tannic acid-containing solid-state fermentation for tannase production. Process Biochemistry, 40, 1773–1782.
  • Varela, C., Pizarro, F., & Agosin, E. (2004). Biomass content governs fermentation rate in nitrogen-deficient wine musts. Applied and Environmental Microbiology, 70, 3392–3400.
  • Wachenheim, D. E., Patterson, J. A., & Ladisch, M. R. (2003). Analysis of the logistic function model: Derivation and applications specific to batch cultured microorganisms. Bioresource Technology, 86, 157–164.
  • Walker, G. M., & Van Dijck, P. (2006). Physiological and molecular responses of yeasts to the environment. In A. Querol and G. Fleet (Eds.), Yeast in Food and Beverages (pp. 111–152). Berlin: Springer.
  • You, K. M., Rosenfield, C. L., & Knipple, D. C. (2003). Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Applied and Environmental Microbiology, 69, 1499–1503.
  • Zuzuarregui, A., & Del Olmo, M. (2004). Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection. Antonie van Leeuwenhoek, 85, 271–280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.