5,797
Views
42
CrossRef citations to date
0
Altmetric
Articles

Effects of germination on iron, zinc, calcium, manganese, and copper availability from cereals and legumes

Efectos de la germinación sobre la disponibilidad de hierro, zinc, calcio, manganeso y cobre de cereales y leguminosas

, , , &
Pages 22-26 | Received 15 Dec 2012, Accepted 28 Feb 2013, Published online: 24 May 2013

References

  • Agte, V., Joshi, S., Paknikar, K., & Chiplonkar, S. (1998). Effect of processing on phytate degradation and mineral solubility in pulses. Journal of Science and Technology, 35, 330–332.
  • Bartnik, M., & Szafranska, I. (1987). Changes in phytate content and phytase activity during the germination of some cereals. Journal of Cereal Science, 5, 23–28.
  • Cheryan, M. (1980). Phytic acid interactions in food systems. Critical Review in Food Science and Nutrition, 13, 297–332.
  • Devadas, R. P. (1998). Local strategies to support child nutrition. Nutrition Research, 18, 233–239.
  • Ekholm, P., Virkki, L., Ylinen, M., & Johansson, L. (2003). The effect of phytic acid and some natural chelating agents on the solubility of mineral elements in oat bran. Food Chemistry, 80, 165–167.
  • Ekholm, P., Virkki, L., Ylinen, M., Johansson, L., & Varo, P. (2000). The effects of natural chelating agents on the solubility of some physiologically important mineral elements in oat bran and oat flakes. Cereal Chemistry, 77, 562–566.
  • Gahlawat, P., & Sehgal, S. (1994). In vitro starch and protein digestibility and iron availability in weaning foods as affected by processing methods. Plant Foods for Human Nutrition, 45, 165–173.
  • Gibson, R. S. (1994). Content and bioaccessibility of trace elements in vegetarian diets. American Journal of Clinical Nutrition, 59(Suppl), 1223S–1232S.
  • Hemalatha, S., Platel, K., & Srinivasan, K. (2005). Influence of food acidulants on bioaccessibility of zinc and iron from selected food grains. Molecular Nutrition and Food Research, 49, 960–965.
  • Kiers, L. J., Nout, M. J. R., & Rombouts, F. M. (2000). In vitro digestibility of processed and fermented soya bean, cowpea and maize. Journal of the Science of Food and Agriculture, 80, 1325–1331.
  • Konietzny, U., Greiner, R., & Jany, K. D. (1995). Purification and characterisation of a phytase from spelt. Journal of Food Biochemistry, 18, 165–183.
  • Larsson, M., Rossander-Hulten, L., Sandstrom, B., & Sandberg, A. S. (1996). Improved zinc and iron absorption from breakfast meals containing malted oats with reduced phytate content. British Journal of Nutrition, 76, 677–688.
  • Lestienne, I., Besanon, P., Caporiccio, B., Lullien-Pellerin, V., & Treche, S. (2005a). Iron and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin, and fiber contents. Journal of Agricultural and Food Chemistry, 53, 3240–3247.
  • Lestienne, I., Besanon, P., Caporiccio, B., Lullien-Pellerin, V., & Treche, S. (2005b). Relative contribution of phytates, fibers, and tannins to low iron and zinc in Vitro solubility in pearl millet (Pennisetum glaucum) flour and grain fractions. Journal of Agricultural and Food Chemistry, 53, 8342–8348.
  • Lestienne, I., Icard-Verniere, C., Mouquet, C., Picq, C., & Treche, S. (2005). Effects of soaking whole cereal and legume seeds on iron, zinc, and phytate contents. Food Chemistry, 89, 421–425.
  • Liang, J., Han, B.-Z., Nout, M. J. R., & Hamer, R. J. (2008). Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chemistry, 110, 841–848.
  • Liu, B. L., Amjad, R., Tzeng, Y. M., & Rob, A. (1998). The induction and characterization of phytase and beyond. Enzyme and Microbial Technology, 22, 415–425.
  • Luo, Y. W., Gu, Z. X., Han, Y. H., & Chen, Z. G. (2009). The impact of processing on phytic acid, in vitro soluble iron and Phy/Fe molar ratio of faba bean (Vicia faba L. Journal of the Science of Food and Agriculture, 89, 861–866.
  • Luo, Y. W., Xie, W. H., & Cui, Q. X. (2010a). Effects of phytase, cellulase, and dehulling treatments on iron and zinc in vitro solubility in faba bean (Vicia faba L.) flour and legume fractions. Journal of Agricultural and Food Chemistry, 58, 2483–2490.
  • Luo, Y. W., Xie, W. H., & Cui, Q. X. (2010b). Effects of phytases and dehulling treatments on in vitro iron and zinc bioavailability in faba bean (vicia faba L.) flour and legume fractions. Journal of Food Science, 75, c191–c198.
  • Luo, Y. W., Xie, W. H., Jin, X. X., Wang, Q., & Zai, X. M. (in press). Effects of germination and cooking for enhanced in vitro iron, calcium and zinc bioaccessibility from faba bean, azuki bean and mung bean sprouts. CyTA-Journal of Food, 11, doi:dx.doi.org/10.1080/19476337.2012.757756.
  • Luo, Y. W., Xie, W. H., Xie, C. Y., Li, Y., & Gu, Z. X. (2009). Impact of soaking and phytase treatments on phytic acid, calcium, iron and zinc in faba bean fractions. International Journal of Food Science and Technology, 2009(44), 2590–2597.
  • Luo, Y. W., Xie, W. H., Xu, M., & Luo, F. X. (2012). Effects of phytase and polyphenol oxidase treatments on in vitro iron bioavailability in faba bean (Vicia faba L). CyTA – Journal of Food, 10, 165–171.
  • Maha Lakshmi, R., & Sumathi, S. (1997). Binding of iron, calcium and zinc by fibre of sorghum and ragi. Food Chemistry, 60, 213–217.
  • Persson, H., Nyman, M., Liljeberg, H., Onning, G., & Frølich, W. (1991). Binding of mineral elements by dietary fibre components in cereals-in vitro (III). Food Chemistry, 40, 169–183.
  • Reddy, N. R., Sathe, S. K., & Salunkhe, D. K. (1982). Phytates in legumes and cereals. Advances in Food Research, 28, 1–92.
  • Sandberg, A. S. (2002). Bioaccessibility of minerals in legumes. British Journal of Nutrition, 88, S281–S285.
  • Tontisirin, K., Nantel, G., & Bhattacharjee, L. (2002). Food-based strategies to meet the challenges of micronutrient malnutrition in the developing world. Processing Nutrition Society, 61, 243–250.
  • Xu, M. J., Dong, J. F., & Zhu, M. Y. (2005). Effect of germination conditions on ascorbic acid level and yield of soybean sprout. Journal of the Science of Food and Agriculture, 85, 943–947.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.