2,008
Views
8
CrossRef citations to date
0
Altmetric
Short Communication

Online monitoring of electrical conductivity of wine induced by ultrasound

Seguimiento online de la conductividad eléctrica del vino inducido por ultrasonido

, , , &
Pages 496-501 | Received 02 Aug 2015, Accepted 13 Oct 2015, Published online: 23 Nov 2015

References

  • Aadil, R. M., Zeng, X.-A., Han, Z., & Sun, D.-W. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141, 3201–3206. doi:10.1016/j.foodchem.2013.06.008
  • Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., & Versteeg, C. (. (2008). Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innovative Food Science & Emerging Technologies, 9, 155–160. doi:10.1016/j.ifset.2007.05.005
  • Birkin, P. R., & Silva-Martinez, S. (1996). A study of the effect of ultrasound on mass transport to a microelectrode. Journal of Electroanalytical Chemistry, 416, 127–138. doi:10.1016/S0022-0728(96)04742-0
  • Campo, F. J. D., Coles, B. A., Marken, F., Compton, R. G., & Cordemans, E. (1999). High-frequency sonoelectrochemical processes: Mass transport, thermal and surface effects induced by cavitation in a 500 kHz reactor. Ultrasonics Sonochemistry, 6, 189–197. doi:10.1016/S1350-4177(99)00017-6
  • Castellanos, M. M., Reyman, D., Sieiro, C., & Calle, P. (2001). ESR-spin trapping study on the sonochemistry of liquids in the presence of oxygen. Evidence for the superoxide radical anion formation. Ultrasonics Sonochemistry, 8, 17–22. doi:10.1016/S1350-4177(99)00047-4
  • Chandrapala, J., Oliver, C., Kentish, S., & Ashokkumar, M. (2012). Ultrasonics in food processing. Ultrasonics Sonochemistry, 19, 975–983. doi:10.1016/j.ultsonch.2012.01.010
  • Chang, A. C. (2004). The effects of different accelerating techniques on maize wine maturation. Food Chemistry, 86, 61–68. doi:10.1016/j.foodchem.2003.08.010
  • Chang, A. C., & Chen, F. C. (2002). The application of 20 kHz ultrasonic waves to accelerate the aging of different wines. Food Chemistry, 79, 501–506. doi:10.1016/S0308-8146(02)00226-1
  • Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18, 813–835. doi:10.1016/j.ultsonch.2010.11.023
  • Cheng, L. H., Soh, C. Y., Liew, S. C., & Teh, F. F. (2007). Effects of sonication and carbonation on guava juice quality. Food Chemistry, 104, 1396–1401. doi:10.1016/j.foodchem.2007.02.001
  • Colombié, S., Latrille, E., & Sablayrolles, J.-M. (2007). On-line estimation of assimilable nitrogen by electrical conductivity measurement during alcoholic fermentation in enological conditions. Journal of Bioscience and Bioengineering, 103, 229–235. doi:10.1263/jbb.103.229
  • Colombié, S., Latrille, E., & Sablayrolles, J.-M. (2008). Interest of on-line monitoring electrical conductivity during wine fermentation. European Food Research and Technology, 226, 1553–1557. doi:10.1007/s00217-007-0649-1
  • Dukkanci, M., & Gunduz, G. (2006). Ultrasonic degradation of oxalic acid in aqueous solutions. Ultrasonics Sonochemistry, 13, 517–522. doi:10.1016/j.ultsonch.2005.10.005
  • Feng, R., Qian, Y., Xu, J., Wang, S., Li, H., & Shi, Q. (1991). Therapeutic ultrasound cavitation and ESR determination of free radicals. Acta Acustica, 16, 306–312.
  • Gambuteanu, C., & Alexe, P. (2013). Principles and effects of acoustic cavitation. Annals of the University Dunarea de Jos of Galati Fascicle VI–Food Technology, 37, 9–17.
  • García Martín, J. F., & Sun, D.-W. (2013). Ultrasound and electric fields as novel techniques for assisting the wine ageing process: The state-of-the-art research. Trends in Food Science & Technology, 33, 40–53. doi:10.1016/j.tifs.2013.06.005
  • Gogate, P. R., & Pandit, A. B. (2004). Sonochemical reactors: Scale up aspects. Ultrasonics Sonochemistry, 11, 105–117. doi:10.1016/j.ultsonch.2004.01.005
  • Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007). Ultrasonic effect on pH, electric conductivity, and tissue surface of button mushrooms, Brussels sprouts and cauliflower. Czech Journal of Food Sciences, 25, 90–100.
  • Kanthale, P. M., Gogate, P. R., Pandit, A. B., & Marie-Wilhelm, A. (2003). Mapping of an ultrasonic horn: Link primary and secondary effects of ultrasound. Ultrasonics Sonochemistry, 10, 331–335. doi:10.1016/S1350-4177(03)00104-4
  • Leighton, T. (1994). The acoustic bubble. London: Academic Press.
  • Löning, J.-M., Horst, C., & Hoffmann, U. (2002). Investigations on the energy conversion in sonochemical processes. Ultrasonics Sonochemistry, 9, 169–179. doi:10.1016/S1350-4177(01)00113-4
  • Makino, K., Mossoba, M. M., & Riesz, P. (1982). Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (OH and H)) by spin trapping. Journal of the American Chemical Society, 104, 3537–3539. doi:10.1021/ja00376a064
  • Martín, O., Zhang, Q., Castro, A. J., Barbosa-Cánovas, G. V., & Swanson, B. G. (1994). Empleo de pulsos eléctricos de alto voltaje para la conservación de alimentos. Microbiología e ingeniería del proceso. Revista Española De Ciencia Y Tecnología De Alimentos, 34, 1–34.
  • Qiu, T., Hu, S., Xie, X., & Zhang, X. (1998). Colloidal coagulation and precipitation promoted by ultrasound. Applied Acoustics, 17, 32–44. (In Chinese).
  • Riesz, P., & Kondo, T. (1992). Free radical formation induced by ultrasound and its biological implications. Free Radical Biology and Medicine, 13, 247–270. doi:10.1016/0891-5849(92)90021-8
  • Singh, R. P., & Heldman, D. R. (2001). Introduction to Food engineering (3rd ed.). London: Academic Press.
  • Speight, J. G. (1999). Ullmann’s encyclopedia of industrial chemistry. Petroleum Science and Technology, 17, 445–445. doi:10.1080/10916469908949727
  • Suslick, K. S., Hammerton, D. A., & Cline, R. E. (1986). Sonochemical hot spot. Journal of the American Chemical Society, 108, 5641–5642. doi:10.1021/ja00278a055
  • Tao, Y., García Martín, J. F., & Sun, D.-W. (2014). Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Critical Reviews in Food Science and Nutrition, 54, 817–835. doi:10.1080/10408398.2011.609949
  • Thompson, L. H., & Doraiswamy, L. K. (1999). Sonochemistry: Science and engineering. Industrial & Engineering Chemistry Research, 38, 1215–1249. doi:10.1021/ie9804172
  • Tiwari, B. K., Patras, A., Brunton, N., Cullen, P. J., & O’Donnell, C. P. (2010). Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics Sonochemistry, 17, 598–604. doi:10.1016/j.ultsonch.2009.10.009
  • Zhang, H. (2007). Electrical properties of foods. Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO, 115–125.
  • Zhang, Q.-A., Shen, H., Fan, X.-H., Shen, Y., Wang, X., & Song, Y. (2015a). Changes of gallic acid mediated by ultrasound in a model extraction solution. Ultrasonics Sonochemistry, 22, 149–154. doi:10.1016/j.ultsonch.2014.06.010
  • Zhang, Q.-A., Shen, Y., Fan, X.-H., & García Martín, J. F. (2015b). Preliminary study of the effect of ultrasound on physicochemical properties of red wine. CyTA – Journal of Food, 1–10. doi:10.1080/19476337.2015.1045036
  • Zhang, Q.-A., Shen, Y., Fan, X.-H., García Martín, J. F., Wang, X., & Song, Y. (2015c). Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study. Ultrasonics Sonochemistry, 27, 96–101. doi:10.1016/j.ultsonch.2015.05.003
  • Zheng, X., Zhang, M., Fang, Z., & Liu, Y. (2014). Effects of low frequency ultrasonic treatment on the maturation of steeped greengage wine. Food Chemistry, 162, 264–269. doi:10.1016/j.foodchem.2014.04.071
  • Zoecklein, B. K., Fugelsang, B., Gump, B., & Nury, F. (1995). Wine analysis and production. New York, NY: Chapman & Hall.