2,124
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Effects of high-temperature–short time (HTST) drying process on proteolysis, lipid oxidation and sensory attributes of Chinese dry-cured chicken

Efectos del proceso de secado de corto periodo a altas temperaturas (HTST) en la proteólisis, la oxidación lipídica y los atributos sensoriales del pollo curado chino

, , , &
Pages 440-448 | Received 06 Jun 2015, Accepted 21 Nov 2015, Published online: 14 Jan 2016

References

  • Arnau, J., Serra, X., Comaposada, J., Gou, P., & Garriga, M. (2007). Technologies to shorten the drying period of dry-cured meat products. Meat Science, 77(1), 81–89. doi:10.1016/j.meatsci.2007.03.015
  • Aro, J., Nyam-Osor, P., Tsuji, K., Shimada, K.-I., Fukushima, M., & Sekikawa, M. (2010). The effect of starter cultures on proteolytic changes and amino acid content in fermented sausages. Food Chemistry, 119(1), 279–285. doi:10.1016/j.foodchem.2009.06.025
  • Barbieri, G., Bolzoni, L., Parolari, G., Virgili, R., Buttini, R., Careri, M., & Mangia, A. (1992). Flavor compounds of dry-cured ham. Journal of Agricultural and Food Chemistry, 40(12), 2389–2394. doi:10.1021/jf00024a013
  • Berdagué, J.L., Monteil, P., Montel, M.C., & Talon, R. (1993). Effects of starter cultures on the formation of flavour compounds in dry sausage. Meat Science, 35(3), 275–287. doi:10.1016/0309-1740(93)90033-E
  • Bermúdez, R., Franco, D., Carballo, J., Sentandreu, M.Á., & Lorenzo, J.M. (2014). Influence of muscle type on the evolution of free amino acids and sarcoplasmic and myofibrillar proteins through the manufacturing process of Celta dry-cured ham. Food Research International, 56, 226–235. doi:10.1016/j.foodres.2013.12.023
  • Böttcher, S., Steinhäuser, U., & Drusch, S. (2015). Off-flavour masking of secondary lipid oxidation products by pea dextrin. Food Chemistry, 169, 492–498. doi:10.1016/j.foodchem.2014.05.006
  • Bouton, P.E., Harris, P.V., & Shorthose, W.R. (1982). The effect of temperature and ultimate pH on the increase in meat toughness resulting from restraint during cooking. Meat Science, 6(3), 235–241. doi:10.1016/0309-1740(82)90032-8
  • Broncano, J.M., Petrón, M.J., Parra, V., & Timón, M.L. (2009). Effect of different cooking methods on lipid oxidation and formation of free cholesterol oxidation products (COPs) in Latissimus dorsi muscle of Iberian pigs. Meat Science, 83(3), 431–437. doi:10.1016/j.meatsci.2009.06.021
  • Cai, J., Chen, Q., Wan, X., & Zhao, J. (2011). Determination of total volatile basic nitrogen (TVB-N) content and Warner–Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy. Food Chemistry, 126(3), 1354–1360. doi:10.1016/j.foodchem.2010.11.098
  • Careri, M., Mangia, A., Barbieri, G., Bouoni, L., Virgili, R., & Parolari, G. (1993). Sensory property relationships to chemical-data of Italian-type dry-cured ham. Journal of Food Science, 58(5), 968–972. doi:10.1111/j.1365-2621.1993.tb06090.x
  • Christensen, M., Purslow, P.P., & Larsen, L.M. (2000). The effect of cooking temperature on mechanical properties of whole meat, single muscle fibres and perimysial connective tissue. Meat Science, 55(3), 301–307. doi:10.1016/S0309-1740(99)00157-6
  • Cilla, I., Martínez, L., Beltrán, J.A., & Roncalés, P. (2006). Dry-cured ham quality and acceptability as affected by the preservation system used for retail sale. Meat Science, 73(4), 581–589. doi:10.1016/j.meatsci.2006.02.013
  • Cordoba, J.J., Antequera, T.A., Garcia, C.G., Ventanas, J.V., Bote, C.L., & Asensio, M.A. (1994). Evolution of free amino-acids and amines during ripening of Iberian cured ham. Journal of Agricultural and Food Chemistry, 42(10), 2296–2301. doi:10.1021/jf00046a040
  • Costa-Corredor, A., Serra, X., Arnau, J., & Gou, P. (2009). Reduction of NaCl content in restructured dry-cured hams: Post-resting temperature and drying level effects on physicochemical and sensory parameters. Meat Science, 83(3), 390–397. doi:10.1016/j.meatsci.2009.06.011
  • Estévez, M. (2011). Protein carbonyls in meat systems: A review. Meat Science, 89(3), 259–279. doi:10.1016/j.meatsci.2011.04.025
  • Etlinger, J.D., Zak, R., & Fischman, D.A. (1976). Compositional studies of myofibrils from rabbit striated muscle. The Journal of Cell Biology, 68(1), 123–141. doi:10.1083/jcb.68.1.123
  • Feng, L., Qiao, Y., Zou, Y.F., Huang, M., Kang, Z.L., & Zhou, G.H. (2014). Effect of flavourzyme on proteolysis, antioxidant capacity and sensory attributes of Chinese sausage. Meat Science, 98(1), 34–40. doi:10.1016/j.meatsci.2014.04.001
  • Flores, M., Barat, J.M., Aristoy, M.-C., Peris, M.M., Grau, R., & Toldrá, F. (2006). Accelerated processing of dry-cured ham. Part 2. Influence of brine thawing/salting operation on proteolysis and sensory acceptability. Meat Science, 72(4), 766–772. doi:10.1016/j.meatsci.2005.10.008
  • Garrido, R., Domínguez, R., Lorenzo, J.M., Franco, I., & Carballo, J. (2012). Effect of the length of salting time on the proteolytic changes in dry-cured lacón during ripening and on the sensory characteristics of the final product. Food Control, 25(2), 789–796. doi:10.1016/j.foodcont.2011.11.036
  • Gou, P., Morales, R., Serra, X., Guàrdia, M.D., & Arnau, J. (2008). Effect of a 10-day ageing at 30°C on the texture of dry-cured hams processed at temperatures up to 18°C in relation to raw meat pH and salting time. Meat Science, 80(4), 1333–1339. doi:10.1016/j.meatsci.2008.06.009
  • Harkouss, R., Astruc, T., Lebert, A., Gatellier, P., Loison, O., Safa, H., … Mirade, P.-S. (2015). Quantitative study of the relationships among proteolysis, lipid oxidation, structure and texture throughout the dry-cured ham process. Food Chemistry, 166, 522–530. doi:10.1016/j.foodchem.2014.06.013
  • Harkouss, R., Safa, H., Gatellier, P., Lebert, A., & Mirade, P.-S. (2014). Building phenomenological models that relate proteolysis in pork muscles to temperature, water and salt content. Food Chemistry, 151, 7–14. doi:10.1016/j.foodchem.2013.10.164
  • Huang, F., Huang, M., Xu, X.L., & Zhou, G.H. (2011). Influence of heat on protein degradation, ultrastructure and eating quality indicators of pork. Journal of the Science of Food and Agriculture, 91(3), 443–448. doi:10.1002/jsfa.v91.3
  • Ishiwatari, N., Fukuoka, M., & Sakai, N. (2013). Effect of protein denaturation degree on texture and water state of cooked meat. Journal of Food Engineering, 117(3), 361–369. doi:10.1016/j.jfoodeng.2013.03.013
  • Jin, G., He, L., Zhang, J., Yu, X., Wang, J., & Huang, F. (2012). Effects of temperature and NaCl percentage on lipid oxidation in pork muscle and exploration of the controlling method using response surface methodology (RSM). Food Chemistry, 131(3), 817–825. doi:10.1016/j.foodchem.2011.09.050
  • Jurado, Á., García, C., Timón, M.L., & Carrapiso, A.I. (2007). Effect of ripening time and rearing system on amino acid-related flavour compounds of Iberian ham. Meat Science, 75(4), 585–594. doi:10.1016/j.meatsci.2006.09.006
  • Koutsidis, G., Elmore, J.S., Oruna-Concha, M.J., Campo, M.M., Wood, J.D., & Mottram, D.S. (2008). Water-soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat Science, 79(2), 270–277. doi:10.1016/j.meatsci.2007.09.010
  • Lim, J. (2011). Hedonic scaling: A review of methods and theory. Food Quality and Preference, 22(8), 733–747. doi:10.1016/j.foodqual.2011.05.008
  • Lorenzo, J.M., Bermúdez, R., Domínguez, R., Guiotto, A., Franco, D., & Purriños, L. (2015). Physicochemical and microbial changes during the manufacturing process of dry-cured lacón salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride. Food Control, 50, 763–769. doi:10.1016/j.foodcont.2014.10.019
  • Lorenzo, J.M., Fonseca, S., Gómez, M., & Domínguez, R. (2015). Influence of the salting time on physico-chemical parameters, lipolysis and proteolysis of dry-cured foal “cecina”. LWT – Food Science and Technology, 60(1), 332–338. doi:10.1016/j.lwt.2014.07.023
  • Ma, H.J., Ledward, D.A., Zamri, A.I., Frazier, R.A., & Zhou, G.H. (2007). Effects of high pressure/thermal treatment on lipid oxidation in beef and chicken muscle. Food Chemistry, 104(4), 1575–1579. doi:10.1016/j.foodchem.2007.03.006
  • Martin, L., Antequera, T., Ruiz, J., Cava, R., Tejeda, J.F., & Cordoba, J.J. (1998). Influence of the processing conditions of Iberian ham on proteolysis during ripening. Food Science and Technology International, 4(1), 17–22. doi:10.1177/108201329800400103
  • Martı́n, L., Antequera, T., Ventanas, J., Benı́tez-Donoso, R., & Córdoba, J.J. (2001). Free amino acids and other non-volatile compounds formed during processing of Iberian ham. Meat Science, 59(4), 363–368. doi:10.1016/S0309-1740(01)00088-2
  • Molina, I., & Toldra, F. (1992). Detection of proteolytic activity in microorganisms isolated from dry-cured ham. Journal of Food Science, 57(6), 1308–1310. doi:10.1111/jfds.1992.57.issue-6
  • Mora, L., Gallego, M., Escudero, E., Reig, M., Aristoy, M.-C., & Toldrá, F. (2015). Small peptides hydrolysis in dry-cured meats. International Journal of Food Microbiology, 212, 9–15. doi:10.1016/j.ijfoodmicro.2015.04.018
  • Roldan, M., Antequera, T., Armenteros, M., & Ruiz, J. (2014). Effect of different temperature–time combinations on lipid and protein oxidation of sous-vide cooked lamb loins. Food Chemistry, 149, 129–136. doi:10.1016/j.foodchem.2013.10.079
  • Rubio-Celorio, M., Garcia-Gil, N., Gou, P., Arnau, J., & Fulladosa, E. (2015). Effect of temperature, high pressure and freezing/thawing of dry-cured ham slices on dielectric time domain reflectometry response. Meat Science, 100, 91–96. doi:10.1016/j.meatsci.2014.10.005
  • Ruiz, J., Garcı́a, C., Muriel, E., Andrés, A.I., & Ventanas, J. (2002). Influence of sensory characteristics on the acceptability of dry-cured ham. Meat Science, 61(4), 347–354. doi:10.1016/S0309-1740(01)00204-2
  • Salih, A.M., Smith, D.M., Price, J.F., & Dawson, L.E. (1987). Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. [Article]. Poultry Science, 66(9), 1483–1488. doi:10.3382/ps.0661483
  • Sánchez-Molinero, F., & Arnau, J. (2014). Effects of the applications of oil drip onto surface and of the use of a temperature of 35°C for 4 days on some physicochemical, microbiological and sensory characteristics of dry-cured ham. Meat Science, 98(2), 81–87. doi:10.1016/j.meatsci.2014.03.021
  • Sforza, S., Pigazzani, A., Motti, M., Porta, C., Virgili, R., Galaverna, G., … Marchelli, R. (2001). Oligopeptides and free amino acids in Parma hams of known cathepsin B activity. Food Chemistry, 75(3), 267–273. doi:10.1016/S0308-8146(01)00224-2
  • Shackelford, S.D., Wheeler, T.L., Meade, M.K., Reagan, J.O., Byrnes, B.L., & Koohmaraie, M. (2001). Consumer impressions of tender select beef. [Article]. Journal of Animal Science, 79(10), 2605–2614.
  • Sun, W., Cui, C., Zhao, M., Zhao, Q., & Yang, B. (2011). Effects of composition and oxidation of proteins on their solubility, aggregation and proteolytic susceptibility during processing of Cantonese sausage. Food Chemistry, 124(1), 336–341. doi:10.1016/j.foodchem.2010.06.042
  • Toldra, F. (1998). Proteolysis and lipolysis in flavour development of dry-cured meat products. [Article; Proceedings Paper]. Meat Science, 49, S101–S110. doi:10.1016/s0309-1740(98)90041-9
  • Toldrá, F., Flores, M., & Sanz, Y. (1997). Dry-cured ham flavour: Enzymatic generation and process influence. Food Chemistry, 59(4), 523–530. doi:10.1016/S0308-8146(97)00013-7
  • Toldrá, F., Rico, E., & Flores, J. (1992). Activities of pork muscle proteases in model cured meat systems. Biochimie, 74(3), 291–296. doi:10.1016/0300-9084(92)90128-2
  • Ventanas, S., Estévez, M., Delgado, C.L., & Ruiz, J. (2007). Phospholipid oxidation, non-enzymatic browning development and volatile compounds generation in model systems containing liposomes from porcine Longissimus dorsi and selected amino acids. European Food Research and Technology, 225(5–6), 665–675. doi:10.1007/s00217-006-0462-2
  • Virgili, R., Saccani, G., Gabba, L., Tanzi, E., & Soresi Bordini, C. (2007). Changes of free amino acids and biogenic amines during extended ageing of Italian dry-cured ham. LWT – Food Science and Technology, 40(5), 871–878. doi:10.1016/j.lwt.2006.03.024
  • Visessanguan, W., Benjakul, S., Riebroy, S., & Thepkasikul, P. (2004). Changes in composition and functional properties of proteins and their contributions to Nham characteristics. Meat Science, 66(3),579– 588. doi:10.1016/s0309-1740(03)00172-4
  • Waade, C., & Stahnke, L.H. (1997). Dried sausages fermented with staphylococcus xylosus at different temperatures and with different ingredient levels. Part IV. Amino acid profile. Meat Science, 46(1), 101–114. doi:10.1016/S0309-1740(96)00089-7
  • Wang, Q., Zhao, X., Ren, Y., Fan, E., Chang, H., & Wu, H. (2013). Effects of high pressure treatment and temperature on lipid oxidation and fatty acid composition of yak (Poephagus grunniens) body fat. Meat Science, 94(4), 489–494. doi:10.1016/j.meatsci.2013.03.006
  • Wenjiao, F., Yongkui, Z., Yunchuan, C., Junxiu, S., & Yuwen, Y. (2014). TBARS predictive models of pork sausages stored at different temperatures. Meat Science, 96(1), 1–4. doi:10.1016/j.meatsci.2013.06.025
  • Yun, J., Shahidi, F., Rubin, L.J., & Diosady, L.L. (1987). Oxidative stability and flavour acceptability of nitrite-free meat-curing systems. Canadian Institute of Food Science and Technology Journal–Journal De L Institut Canadien De Science Et Technologie Alimentaires, 20(4), 246–251. doi:10.1016/S0315-5463(87)71195-X
  • Zhang, J., Jin, G., Wang, J., & Zhang, W. (2011). Effect of intensifying high-temperature ripening on lipolysis and lipid oxidation of Jinhua ham. LWT – Food Science and Technology, 44(2), 473–479. doi:10.1016/j.lwt.2010.07.007
  • Zhang, L., Lin, Y.H., Leng, X.J., Huang, M., & Zhou, G.H. (2013). Effect of sage (Salvia officinalis) on the oxidative stability of Chinese-style sausage during refrigerated storage. Meat Science, 95(2), 145–150. doi:10.1016/j.meatsci.2013.05.005
  • Zhao, G.M., Zhou, G.H., Wang, Y.L., Xu, X.L., Huan, Y.J., & Wu, J.Q. (2005). Time-related changes in cathepsin B and L activities during processing of Jinhua ham as a function of pH, salt and temperature. Meat Science, 70(2), 381–388. doi:10.1016/j.meatsci.2005.02.004