2,000
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Influence of lactic acid bacteria–fermented Helianthus tuberosus L. and Lupinus luteus on quality of milk products

Influencia de la bacteria ácido-láctica fermentada Helianthus tuberosus L. y Lupinus luteus en la calidad de los productos lácteos

, , , , &
Pages 482-488 | Received 02 Oct 2015, Accepted 22 Dec 2015, Published online: 19 Feb 2016

References

  • Bartkiene, E., Schleining, G., Rekstyte, T., Krungleviciute, V., Juodeikiene, G., Vaiciulyte-Funk, L., & Maknickiene, Z. (2013). Influence of the addition of lupin sourdough with different lactobacilli on dough properties and bread quality. International Journal of Food Science & Technology, 48, 2613–2620. doi:10.1111/ijfs.12257
  • Bartkiene, E., Serniene, L., Juodeikiene, G., Drungilas, E., & Valatkeviciene, Z. (2014). The safety, technology and sensory aspects of pasteurized and raw milk treated by solid-state fermented grain extrudates inoculated with certain lactobacilli. Veterinarija Ir Zootechnika, 65, 3–10.
  • Bartkiene, E., Skabeikytė, E., Juodeikienė, G., Vidmantienė, D., & Bašinskienė, L. (2014). The use of solid state fermentation for food. Veterinarija Ir Zootechnika, 66, 1–11.
  • Bello, D., Clarke, F., & Ryan, C. (2007). Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science, 45, 309–318. doi:10.1016/j.jcs.2006.09.004
  • Campos-Andrada, M.P., Santana, F.M.C., Felgueiras, I., Mimoso, M.J., & Empis, J.M.A. (1999, June) Nutritional value of Lupinus angustifolius and L. cosentinii accessions with diverse genetic origin. In Proceedings of the 9th International Lupin Conference. Germany
  • de Lima, C.J.B., Coelho, L.F., Blanco, K.C., & Contiero, J. (2009). Response surface optimization of D(-) lactic acid production from Lactobacillus SMI8 using corn steep liquor and yeast autolysate as nitrogen sources. African Journal of Food Science, 3, 257–261. doi:10.4314/ajb.v8i21.66061
  • Digaitiene, A., Hansen, A., Juodeikiene, G., & Josephsen, J. (2005). Microbial population in Lithuanian spontaneous rye sourdoughs. Ekologia I Technika, 5, 193–198.
  • Dolezal, P. (2002). Effect of supplements of Lactobacillus plantarum DSM 12771 on the quality of ensiled alfalfa and grass with a high content of dry matter. Mendel University of Agriculture and Forestry in Brno, 5, 37–44.
  • Erbas, M., Certel, M., & Uslu, M.K. (2005). Some chemical properties of white lupin seeds (Lupinus albus L). Food Chemistry, 89, 341–34. doi:10.1016/j.foodchem.2004.02.040
  • Facklam, R., & Elliott, J.A. (1995). Identification, classification and clinical relevance of catalase-negative, gram-positive cocci excluding the streptococci and enterococci. Clinical Microbiology. Reviews, 8, 479–495.
  • Ghosh, D., & Chattopadhyay, P. (2012). Application of principal component analysis (PCA) as a sensory assessment tool for fermented food products. Journal of Food Science and Technology, 49, 328–334. doi:10.1007/s13197-011-0280-9
  • Gilbert, C., Särkilahti, L., Apajalahti, J., Acamovic, T., & Bedford, M.R. (2000). Microbial populations in caecal contents from chicks fed lupin-based diets, with and without enzyme supplementation. In Proceedings of XXI World’s Poultry Congress (CD). Montreal, Canada.
  • Gomez, M., Oliete, B., Rosell, C.M., Pando, V., & Fernandez, E. (2008). Studies on cake quality made of wheat – chickpea flour blends. Food Science and Technology, 41, 1701–1709. doi:10.1016/j.lwt.2007.11.024
  • Gurukripa Kowlgi, N., & Chhabra, L. (2015). D-lactic acidosis: An underrecognized complication of short bowel syndrome. Gastroenterology Research and Practice, 2015, 1–8. doi:10.1155/2015/476215
  • Ibeawuchi, J.A., & Daylop, D.M. (1995). Composition and quality of fresh cow milk offered for sale in plateau State Nigeria. Nigerian Journal of Animal Production, 22, 81–85.
  • John, R.P., Anisha, G.S., Madhavan, N.K., & Ashok, P. (2009). Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnology Advances, 27, 145–152. doi:10.1016/j.biotechadv.2008.10.004
  • Kim, Y., Faqih, M.N., & Wang, S.S. (2001). Factors affecting gel formation of inulin. Carbohydrate Polymers, 46, 135–145. doi:10.1016/S0144-8617(00)00296-4
  • Kohajdova, Z., Karovičova, J., & Schmidt, Š. (2011). Lupin composition and possible use in bakery – A review. Czech Journal of Food Science, 29, 203–211.
  • La Torre, L. (2003). Rheology and sensory profiling of set-type fermented milks made with different commercial probiotic and yogurt starter cultures. International Journal of Dairy Technology, 56, 163–170. doi:10.1046/j.1471-0307.2003.00098.x
  • Lampart-Szczapa, E., Korczak, J., Nogala-Kalucka, M., & Zawirska-Wojtasiak, R. (2003). Antioxidant properties of lupin seed products. Food Chemistry, 83, 279–285. doi:10.1016/S0308-8146(03)00091-8
  • Mantzouridou, F., Spanou, A., & Kiosseoglou, V. (2012). An inulin-based dressing emulsion as a potential probiotic food carrier. Food Research International, 46, 260–269. doi:10.1016/j.foodres.2011.12.016
  • Mariángeles, B.M., Moineau, S., & Quiberon, A. (2012). Bacteriophages and dairy fermentations. Bacteriophage, 2, 149–158. doi:10.4161/bact.21868
  • Martínez-Villaluenga, C., Frías, J., & Vidal-Valverde, C. (2006). Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of ɑ-galactosides. Food Chemistry, 9(8), 291–299.
  • Mirdamadi, S., Sadeghi, H., Sharafi, N., Fallahpour, M., Mohseni, A.F., & Bakhtiari, M.R. (2002). Comparison of lactic acid isomers produced by fungal and bacterial strains. Iranian Biomedical Journal, 6, 69–75.
  • Oliveira, R.P.S., Perego, P., Oliveira, M.N., & Converti, A. (2012). Effect of inulin on the growth and metabolism of a probiotic strain of Lactobacillus rhamnosus in co-culture with Streptococcus thermophilus. LWT - Food Science and Technology, 47, 358–363. doi:10.1016/j.lwt.2012.01.031
  • Ozcan, T. (2013). Determination of yogurt quality by using rheological and textural parameters. 2nd International Conference on Nutrition and Food Sciences IPCBEE. doi:10.7763/IPCBEE.2013.V53.23
  • Panesar, P.S. (2011). Fermented dairy products: starter cultures and potential nutritional benefits. Food and Nutrition Sciences, 2, 47–51. doi:10.4236/fns.2011.21006
  • Park, S.J., Lee, S.Y., Kim, T.W., Jung, Y.K., & Yang, T.H. (2012). Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria. Biotechnology, 7, 199–212. doi:10.1002/biot.201100070
  • Pedersen, S.M., & Gylling, M. (2000). Lupin proteins for fermentation – economic and technology assessment. In Proceedings of 1st World Conference on Biomass for Energy and Industry. London: James and James (Science Publishers) Ltd.
  • Roberfroid, M. (2000). Non digestible oligosaccharides. Critical Reviews in Food Science and Nutrition, 40, 461–480. doi:10.1080/10408690091189239
  • Rubel, I.A., Pérez, E.E., Genovese, D.B., & Manrique, G.D. (2014). In vitro prebiotic activity of inulin-rich carbohydrates extracted from Jerusalem artichoke (Helianthus tuberosus L.) tubers at different storage times by Lactobacillus paracasei. Food Research International, 62, 59–65. doi:10.1016/j.foodres.2014.02.024
  • Saeed, A.H, & Salam, A.I. (2013). Current limitations and challenges with lactic acid bacteria: A review. Food and Nutrition Sciences, 4, 73–87. doi:10.4236/fns.2013.411A010
  • Scarafoni, A., Ronchi, A., & Duranti, M. (2009). A real-time PCR method for the detection and quantification of lupin flour in wheat flour-based matrices. Food Chemistry, 115, 1088–1093. doi:10.1016/j.foodchem.2008.12.087
  • Simova, E.D., Beshkova, D.B., & Dimitro, Z.P. (2009). Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. Journal of Applied Microbiology, 106, 692–701. doi:10.1111/j.1365-2672.2008.04052.x
  • Sobrino-López, A., & Martín-Belloso, O. (2008). Use of nisin and other bacteriocins for preservation of dairy products. International Dairy Journal, 18, 329–343. doi:10.1016/j.idairyj.2007.11.009
  • Sodini, I., Lucas, A., Oliveira, N., Remeuf, F., & Corrieu, G. (2002). Effect of milk base and starter culture on acidification, texture, and probiotic cell counts in fermented milk processing. Journal of Dairy Science, 85, 2479–2488. doi:10.3168/jds.S0022-0302(02)74330-0
  • Sodini, I., Remeuf, F., Haddad, S., & Corrieu, G. (2004). The relative effect of milk base, starter, and process on yogurt texture: A review. Critical Reviews in Food Science and Nutrition, 44, 113–137. doi:10.1080/10408690490424793
  • Swanton, C.J., Calvers, P.B., Clements, D.R., & Moore, M.J. (1992). The biology of Canadian weeds. 101. Helianthus tuberosus L. Canadian Journal of Plant Science, 72, 1367–1382. doi:10.4141/cjps92-169
  • Szambelan, K., Nowak, J., & Chrapkowskaja, K.J. (2004). Comparison of the bacterial and yeast ethanol fermentation yield from Jerusalem artichoke (Helianthus tuberosus L.) tubes, pulp and juice. Acta Scientiarium Polonarium. Technology Alimentarium, 3, 45–53.
  • Vuyst, L.D., & Vancanneyt, M. (2007). Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiology, 24, 120–127. doi:10.1016/j.fm.2006.07.005
  • Widyastuti, Y., Rohmatussolihat, & Febrisiantosa, A. (2014). The role of lactic acid bacteria in milk fermentation. Food & Nutrition Sciences, 5, 435–442. doi: 10.4236/fns.2014.54051
  • Zeppa, G., Conterno, L., & Gerbi, V. (2001). Determination of organic acids, sugars, diacetyl, and acetoin in cheese by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 49, 2722–2726. doi:10.1021/jf0009403