1,368
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

The mechanics of formation of heat-induced myofibrillar protein gel from rabbit psoas major

El mecanismo de la formación de gel proteínico miofibrilar inducido con calor de psoas mayor de conejo

, , , , , , & show all
Pages 181-190 | Received 03 May 2016, Accepted 07 Sep 2016, Published online: 05 Dec 2016

References

  • Barbut, S. (1997). Microstructure of white and dark turkey meat batters as affected by pH. British Poultry Science, 38(2), 175–182.
  • Boyer, C., Joandel, S., Ouali, A., & Culioli, J. (1996). Ionic strength effects on heat-induced gelation of myofibrils and myosin from fast- and slow-twitch rabbit muscles. Journal of Food Science, 61, 1143–1148. doi:10.1111/jfds.1996.61.issue-6
  • Camou, J., Sebranek, J., & Olson, D. (1989). Effect of heating rate and protein concentration on gel strength and water loss of muscle protein gels. Journal of Food Science, 54, 850–854. doi:10.1111/jfds.1989.54.issue-4
  • Chin, K.B., Go, M.Y., & Xiong, Y.L. (2009). Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation. Meat Science, 81, 565–572. doi:10.1016/j.meatsci.2008.10.012
  • Chou, D.H., & Morr, C.V. (1979). Protein-water interactions and functional properties. Journal of the American Oil Chemists’ Society, 56, A53–A62. doi:10.1007/BF02671785
  • Damodaran, S. (2007). Amino acids, peptides, and proteins. In O.R. Fennema (Ed.), Food chemistry (pp. 217–329). London: CRC Press.
  • Egelandsdal, B., Fretheim, K., & Samejima, K. (1986). Dynamic rheological measurements on heat‐induced myosin gels: Effect of ionic strength, protein concentration and addition of adenosine triphosphate or pyrophosphate. Journal of the Science of Food and Agriculture, 37, 915–926. doi:10.1002/(ISSN)1097-0010
  • Egelandsdal, B., Martinsen, B., & Autio, K. (1995). Rheological parameters as predictors of protein functionality: A model study using myofibrils of different fibre-type composition. Meat Science, 39, 97–111. doi:10.1016/0309-1740(95)80011-5
  • Ferry, J.D., & Myers, H.S. (1961). Viscoelastic properties of polymers. Journal of the Electrochemical Society, 108, 142C–143C. doi:10.1149/1.2428174
  • Foegeding, E., Allen, C., & Dayton, W. (1986). Effect of heating rate on thermally formed myosin, fibrinogen and albumin gels. Journal of Food Science, 51, 104–108. doi:10.1111/jfds.1986.51.issue-1
  • Gordon, A., & Barbut, S. (1989). The effect of chloride salts on the texture, microstructure and stability of meat batters. Food Structure, 8(2), 14.
  • Gornall, A.G., Bardawill, C.J., & David, M.M. (1949). Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177, 751–766.
  • Hermansson, A.-M., Harbitz, O., & Langton, M. (1986). Formation of two types of gels from bovine myosin. Journal of the Science of Food and Agriculture, 37, 69–84. doi:10.1002/(ISSN)1097-0010
  • Huff-Lonergan, E., & Lonergan, S.M. (2005). Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Science, 71, 194–204. doi:10.1016/j.meatsci.2005.04.022
  • Huxley, H.E. (1963). Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. Journal of Molecular Biology, 7, 281–IN30. doi:10.1016/S0022-2836(63)80008-X
  • Ishioroshi, M., Samejima, K., Arie, Y., & Yasui, T. (1980). Effect of blocking the myosin-actin interaction in heat-induced gelation of myosin in the presence of actin. Agricultural and Biological Chemistry, 44, 2185–2194.
  • Ishioroshi, M., Samejima, K., & Yasui, T. (1983). Heat-induced gelation of myosin filaments at a low salt concentration. Agricultural and Biological Chemistry, 47, 2809–2816.
  • Iwasaki, T., Washio, M., & Yamamoto, K. (2005a). Atomic force microscopy of thermally treated myosin filaments. Journal of Agricultural and Food Chemistry, 53, 4589–4592. doi:10.1021/jf0500381
  • Iwasaki, T., Washio, M., Yamamoto, K., & Nakamura, K. (2005b). Rheological and morphological comparison of thermal and hydrostatic pressure-induced filamentous myosin gels. Journal of Food Science, 70, e432–e436. doi:10.1111/jfds.2005.70.issue-7
  • Kocher, P., & Foegeding, E. (1993). Microcentrifuge-based method for measuring water-holding of protein gels. Journal of Food Science, 58, 1040–1046. doi:10.1111/jfds.1993.58.issue-5
  • Kristinsson, H., & Hultin, H. (2003). Role of pH and ionic strength on water relationships in washed minced chicken-breast muscle gels. Journal of Food Science, 68, 917–922. doi:10.1111/jfds.2003.68.issue-3
  • Lanier, T.C., Yongsawatdigul, J., & Carvajal-Rondanelli, P. (2013). Surimi gelation chemistry 4. In J. W. Park (Ed.), Surimi and surimi seafood. London: CRC Press.
  • Lefevre, F., Fauconneau, B., Ouali, A., & Culioli, J. (2002). Thermal gelation of brown trout myofibrils from white and red muscles: Effect of pH and ionic strength. Journal of the Science of Food and Agriculture, 82(4), 452–463. doi:10.1002/(ISSN)1097-0010
  • Lesiów, T., & Xiong, Y.L. (2001). Mechanism of rheological changes in poultry myofibrillar proteins during gelation. Avian and Poultry Biology Reviews, 12, 137–149. doi:10.3184/147020601783698486
  • Liu, G., & Xiong, Y.L. (1997). Gelation of chicken muscle myofibrillar proteins treated with protease inhibitors and phosphates. Journal of Agricultural and Food Chemistry, 45, 3437–3442. doi:10.1021/jf9700485
  • Liu, R., Zhao, S.-M., Liu, Y.-M., Yang, H., Xiong, S.-B., Xie, B.-J., & Qin, L.-H. (2010). Effect of pH on the gel properties and secondary structure of fish myosin. Food Chemistry, 121, 196–202. doi:10.1016/j.foodchem.2009.12.030
  • Liu, R., Zhao, S.-M., Xiong, S.-B., Xie, B.-J., & Qin, L.-H. (2008). Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Science, 80, 632–639. doi:10.1016/j.meatsci.2008.02.014
  • Morita, J.I., Choe, I.S., Yamamoto, K., Samejima, K., & Yasui, T. (1987). Heat-induced gelation of myosin from leg and breast muscles of chicken. Agricultural and Biological Chemistry, 51(11), 2895–2900.
  • Niwa, E., Chen, E., Wang, T., Kanoh, S., & Nakayama, T. (1988). Extraordinarity in the temperature-dependence of physical parameters of kamaboko [elastic fish paste]. Nippon Suisan Gakkaishi, 54, 1789–1793. doi:10.2331/suisan.54.1789
  • Offer, G., & Trinick, J. (1983). On the mechanism of water holding in meat: The swelling and shrinking of myofibrils. Meat Science, 8, 245–281. doi:10.1016/0309-1740(83)90013-X
  • Parsons, N., & Knight, P. (1990). Origin of variable extraction of myosin from myofibrils treated with salt and pyrophosphate. Journal of the Science of Food and Agriculture, 51, 71–90. doi:10.1002/(ISSN)1097-0010
  • Samejima, K., Lee, N.H., Ishioroshi, M., & Asghar, A. (1992). Protein extractability and thermal gel formability of myofibrils isolated from skeletal and cardiac muscles at different post-mortem periods. Journal of the Science of Food and Agriculture, 58, 385–393. doi:10.1002/(ISSN)1097-0010
  • Samejima, K., Oka, Y., Yamamoto, K., Asghar, A., & Yasui, T. (1986). Effects of temperature, actin-myosin ratio, pH, and salt and protein concentrations on heat-induced gelling of cardiac myosin and reconstituted actomyosin. Agricultural and Biological Chemistry, 50, 2101–2110.
  • Sano, T., Noguchi, S.F., Matsumoto, J.J., & Tsuchiya, T. (1990). Thermal gelation characteristics of myosin subfragments. Journal of Food Science, 55, 55–58. doi:10.1111/jfds.1990.55.issue-1
  • Sharp, A., & Offer, G. (1992). The mechanism of formation of gels from myosin molecules. Journal of the Science of Food and Agriculture, 58, 63–73. doi:10.1002/(ISSN)1097-0010
  • Shimada, M., Takai, E., Ejima, D., Arakawa, T., & Shiraki, K. (2015). Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution. International Journal of Biological Macromolecules, 73, 17–22. doi:10.1016/j.ijbiomac.2014.11.005
  • Stone, A., & Stanley, D. (1994). Muscle protein gelation at low ionic strength. Food Research International, 27, 155–163. doi:10.1016/0963-9969(94)90157-0
  • Sun, X.D., & Arntfield, S.D. (2011). Gelation properties of chicken myofibrillar protein induced by transglutaminase crosslinking. Journal of Food Engineering, 107, 226–233. doi:10.1016/j.jfoodeng.2011.06.019
  • Tornberg, E. (2005). Effects of heat on meat proteins–Implications on structure and quality of meat products. Meat Science, 70, 493–508. doi:10.1016/j.meatsci.2004.11.021
  • Trespalacios, P., & Pla, R. (2007). Simultaneous application of transglutaminase and high pressure to improve functional properties of chicken meat gels. Food Chemistry, 100, 264–272. doi:10.1016/j.foodchem.2005.09.058
  • Westphalen, A., Briggs, J., & Lonergan, S. (2005). Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gelation. Meat Science, 70, 293–299. doi:10.1016/j.meatsci.2005.01.015
  • Westphalen, A.D., Briggs, J.L., & Lonergan, S.M. (2006). Influence of muscle type on rheological properties of porcine myofibrillar protein during heat-induced gelation. Meat Science, 72, 697–703. doi:10.1016/j.meatsci.2005.09.021
  • Wu, M., Xiong, Y., Chen, J., Tang, X., & Zhou, G. (2009). Rheological and microstructural properties of porcine myofibrillar protein-lipid emulsion composite gels. Journal of Food Science, 74, E207–E217. doi:10.1111/jfds.2009.74.issue-4
  • Xiong, Y., & Brekke, C. (1989). Changes in protein solubility and gelation properties of chicken myofibrils during storage. Journal of Food Science, 54, 1141–1146. doi:10.1111/jfds.1989.54.issue-5
  • Xiong, Y., Lou, X., Wang, C., Moody, W., & Harmon, R. (2000). Protein extraction from chicken myofibrils irrigated with various polyphosphate and NaCl solutions. Journal of Food Science, 65, 96–100. doi:10.1111/jfds.2000.65.issue-1
  • Xiong, Y.L. (1992). A comparison of the rheological characteristics of different fractions of chicken myofibrillar proteins. Journal of Food Biochemistry, 16, 217–227. doi:10.1111/jfbc.1992.16.issue-4
  • Xiong, Y.L. (2000). Meat processing. In S.S. Nakai & H.W. Modler (Eds.), Food proteins: Processing applications (pp. 89–145). New York, NY: Wiley-VCH.
  • Yamamoto, K., Samejima, K., & Yasui, T. (1988). Heat-induced gelation of myosin filaments. Agricultural and Biological Chemistry, 52, 1803–1811.
  • Yongsawatdigul, J., & Park, J. (1999). Thermal aggregation and dynamic rheological properties of Pacific whiting and cod myosins as affected by heating rate. Journal of Food Science, 64, 679–683. doi:10.1111/jfds.1999.64.issue-4