2,017
Views
10
CrossRef citations to date
0
Altmetric
Articles

Impact of protein metabolic conversion and volatile derivatives on gluten-free muffins made with quinoa sourdough

Impacto de la conversión metabólica de proteínas y derivados volátiles en panecillos [magdalenas o muffins] sin gluten elaborados con masa madre de quinua

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 744-753 | Received 24 Apr 2019, Accepted 16 Jul 2019, Published online: 07 Oct 2019

References

  • AACC - American Association of Cereal Chemists. (2010). Approved methods of analysis. St. Paul. Approved Methods Committee. Retrieved from http://methods.aaccnet.org/
  • Alarcón, F. J., Moyano, F. J., & Díaz, M. (2001). Use of SDS-page in the assessment of protein hydrolysis by fish digestive enzymes use of SDS-page in the assessment of protein hydrolysis by fish digestive enzymes. Aquaculture International, 9, 255–267. doi:10.1023/A:1016809014922
  • Alarcón, F. J., Moyano, F. J., Díaz, M., Fernández-Díaz, C., & Yúfera, M. (1999). Optimization of the protein fraction of microcapsules used in feeding of marine fish larvae using in vitro digestibility techniques. Aquaculture Nutrition, 5, 107–1113. doi:10.1046/j.1365-2095.1999.00093.x
  • Arendt, E. K., Moroni, A., & Zannini, E. (2011). Medical nutrition therapy : Use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microbial Cell Factories, 10(Suppl 1), 1–9. doi:10.1186/1475-2859-10-S1-S15
  • Bender, D., Fraberger, V., Szepasvári, P., D’Amico, S., Tömösközi, S., Cavazzi, G., … Schoenlechner, R. (2018). Effects of selected lactobacilli on the functional properties and stability of gluten-free sourdough bread. European Food Research and Technology, 244(6), 1037–1046. doi:10.1007/s00217-017-3020-1
  • Bourekoua, H., Benatallah, L., Zidoune, M. N., & Rosell, C. M. (2016). Developing gluten free bakery improvers by hydrothermal treatment of rice and corn flours. LWT - Food Science and Technology, 73, 342–350. doi:10.1016/j.lwt.2016.06.032
  • Chiș, M. S., Păucean, A., Stan, L., Mureșan, V., Vlaic, R. A., Man, S., & Muste, S. (2018). Lactobacillus plantarum ATCC 8014 in quinoa sourdough adaptability and antioxidant potential. Romanian Biotechnological Letters, 23(3), 13581–13591.
  • Coda, R., Di Cagno, R., Gobbetti, M., & Rizzello, C. G. (2014). Sourdough lactic acid bacteria: Exploration of non-wheat cereal-based fermentation. Food Microbiology, 37, 51–58. doi:10.1016/j.fm.2013.06.018
  • Coda, R., Rizzello, C. G., & Gobbetti, M. (2010). Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). International Journal of Food Microbiology, 137(2–3), 236–245. doi:10.1016/j.ijfoodmicro.2009.12.010
  • Copelton, D. A., & Valle, G. (2009). “You don’t need a prescription to go gluten-free”: The scientific self-diagnosis of celiac disease. Social Science and Medicine, 69(4), 623–631. doi:10.1016/j.socscimed.2009.05.012
  • Dallagnol, A. M., Pescuma, M., De Valdez, G. F., & Rollán, G. (2013). Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: Proteolytic activity. Applied Microbiology and Biotechnology, 97(7), 3129–3140. doi:10.1007/s00253-012-4520-3
  • Föste, M., Nordlohne, S. D., Elgeti, D., Linden, M. H., Heinz, V., Jekle, M., & Becker, T. (2014). Impact of quinoa bran on gluten-free dough and bread characteristics. European Food Research and Technology, 239(5), 767–775. doi:10.1007/s00217-014-2269-x
  • Gänzle, M. G. (2014). Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 37, 2–10. doi:10.1016/j.fm.2013.04.007
  • Gobbetti, M., De Angelis, M., Corsetti, A., & Di Cagno, R. (2005). Biochemistry and physiology of sourdough lactic acid bacteria. Trends in Food Science and Technology, 16(1–3), 57–69. doi:10.1016/j.tifs.2004.02.013
  • Gobbetti, M., De Angelis, M., Di Cagno, R., Calasso, M., Archetti, G., & Rizzello, C. G. (2018a). Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology. doi:10.1016/j.ijfoodmicro.2018.05.018
  • Gobbetti, M., Rizzello, C. G., Di Cagno, R., & De Angelis, M. (2014). How the sourdough may affect the functional features of leavened baked goods. Food Microbiology, 37, 30–40. doi:10.1016/j.fm.2013.04.012
  • Goswami, D., Gupta, R. K., Mridula, D., Sharma, M., & Tyagi, S. K. (2015). Barnyard millet based muffins: Physical, textural and sensory properties. LWT - Food Science and Technology, 64(1), 374–380. doi:10.1016/j.lwt.2015.05.060
  • Kati, K., Kaisa, P., & Karin, A. (2004). Influence and interactions of processing conditions and starter culture on formation of acids, volatile compounds, and amino acids in wheat sourdoughs. Cereal Chemistry, 81(5), 598–610. doi:10.1094/CCHEM.2004.81.5.598
  • Li, G., & Zhu, F. (2018). Quinoa starch: Structure, properties, and applications. Carbohydrate Polymers, 181, 851–861. doi:10.1016/j.carbpol.2017.11.067
  • Lorusso, A., Verni, M., Montemurro, M., Coda, R., Gobbetti, M., & Rizzello, C. G. (2017). Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features. LWT - Food Science and Technology, 78, 215–221. doi:10.1016/j.lwt.2016.12.046
  • Mäkinen, O. E., Zannini, E., Koehler, P., & Arendt, E. K. (2016). Heat-denaturation and aggregation of quinoa (Chenopodium quinoa) globulins as affected by the pH value. Food Chemistry, 196, 17–24. doi:10.1016/j.foodchem.2015.08.069
  • Naqash, F., Gani, A., Gani, A., & Masoodi, F. A. (2017). Gluten-free baking: Combating the challenges - A review. Trends in Food Science and Technology, 66, 98–107. doi:10.1016/j.tifs.2017.06.004
  • Navruz-Varli, S., & Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371–376. doi:10.1016/j.jcs.2016.05.004
  • Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2018). Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Industrial Crops and Products, 111, 38–46. doi:10.1016/j.indcrop.2017.10.006
  • Pétel, C., Onno, B., & Prost, C. (2017). Sourdough volatile compounds and their contribution to bread: A review. Trends in Food Science and Technology, 59, 105–123. doi:10.1016/j.tifs.2016.10.015
  • Pico, J., Hansen, S., & Petersen, M. A. (2017). Comparison of the volatile profiles of the crumb of gluten-free breads by DHE-GC/MS. Journal of Cereal Science, 76, 280–288. doi:10.1016/j.jcs.2017.07.004
  • Poutanen, K., Flander, L., & Katina, K. (2009). Sourdough and cereal fermentation in a nutritional perspective. Food Microbiology, 26(7), 693–699. doi:10.1016/j.fm.2009.07.011
  • Ramos-ruiz, R., Poirot, E., & Flores-Mosquera, M. (2018). Food science & technology | Review article Gaba, a non-protein amino acid ubiquitous in food matrices. Cogent Food & Agriculture, 4(1), 1–89. doi:10.1080/23311932.2018.1534323
  • Rehman, S.-U., Paterson, A., & Piggott, J. R. (2006). Flavour in sourdough breads: A review. Trends in Food Science and Technology, 17(10), 557–566. doi:10.1016/j.tifs.2006.03.006
  • Rizzello, C. G., Lorusso, A., Montemurro, M., & Gobbetti, M. (2016). Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiology, 56, 1–13. doi:10.1016/j.fm.2015.11.018
  • Rizzello, C. G., Lorusso, A., Russo, V., Pinto, D., Marzani, B., & Gobbetti, M. (2017). Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. International Journal of Food Microbiology, 241, 252–261. doi:10.1016/j.ijfoodmicro.2016.10.035
  • Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949–1956. doi:10.1016/j.peptides.2010.06.020
  • Schagger, H., & Von Jagow, G. (1987). Tricine-sodium dodecylsulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166(I 987), 368–379. doi:10.1016/0003-2697(87)90587-2
  • Slapkauskaite, J., Sekmokiene, D., Kabasinskiene, A., Juodeikiene, G., & Sarkinas, A. (2016). Influence of lactic acid bacteria – Fermented Helianthus tuberosus L. and Lupinus luteus on quality of milk products. CyTA - Journal of Food, 14(3), 482–488. doi:10.1080/19476337.2015.1137355
  • Socaci, S. A., Socaciu, C., Mureşan, C., Fǎrcaş, A., Tofanǎ, M., Vicaş, S., & Pintea, A. (2014). Chemometric discrimination of different tomato cultivars based on their volatile fingerprint in relation to lycopene and total phenolics content. Phytochemical Analysis, 25(2), 161–169. doi:10.1002/pca.2483
  • Valcárcel-yamani, B., & Caetano, S. (2012). Applications of quinoa (Chenopodium Quinoa Willd.) and Amaranth (Amaranthus Spp.) and their influence in the nutritional value of cereal based foods. Food and Public Health, 2(6), 265–275. doi:10.5923/j.fph.20120206.12
  • Vermeulen, N., Ganzle, M. G., & Vogel, R. F. (2006). Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451(T) and Lactobacillus plantarum TMW1.468. Journal of Agricultural and Food Chemistry, 54(11), 3832–3839. doi:10.1021/jf052733e
  • Vilcacundo, R., & Hernández-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1–6. doi:10.1016/j.cofs.2016.11.007
  • Vilcacundo, R., Miralles, B., Carrillo, W., & Hernández-Ledesma, B. (2018). In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International, 105, 403–411. doi:10.1016/j.foodres.2017.11.036
  • Villegas, M., Brown, L., De Giori, G. S., & Hebert, E. M. (2016). Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough. LWT - Food Science and Technology, 67, 22–26. doi:10.1016/j.lwt.2015.11.027
  • Zannini, E., Pontonio, E., Waters, D. M., & Arendt, E. K. (2012). Applications of microbial fermentations for production of gluten-free products and perspectives. Applied Microbiology and Biotechnology, 93(2), 473–485. doi:10.1007/s00253-011-3707-3