1,371
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effects of 1, 3-dioleoyl-2-palmitoylglycerol and its plant-oil formula on the toddler fecal microbiota during in vitro fermentation

Efectos del 1, 3-dioleoil-2-palmitoilglicerol y su fórmula de aceite vegetal en la microbiota fecal del niño pequeño durante la fermentación in vitro

, &
Pages 850-863 | Received 03 Jan 2019, Accepted 12 Jul 2019, Published online: 18 Oct 2019

References

  • Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., … Caporaso, J. G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10, 57–59. doi:10.1038/nmeth.2276
  • Brooks, G. A. (2009). Cell-cell and intracellular lactate shuttles. Journal of Physiology, 587, 5591–5600. doi:10.1113/jphysiol.2009.178350
  • Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Station Theory Applied, 11, 265–270. doi:10.2307/4615964
  • Chao, A., & Shen, T. J. (2004). Nonparametric prediction in species sampling. Journal of Agricultural, Biological, and Environmental Statistics, 9, 253–269. doi:10.1198/108571104X3262
  • Chao, A., & Yang, M. C. K. (1993). Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika, 80, 193–201. doi:10.1093/biomet/80.1.193
  • Chen, G., Xie, M., Wan, P., Chen, D., Ye, H., Chen, L., … Liu, Z. (2018). Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea. Food Chemistry, 244, 331–339. doi:10.1016/j.foodchem.2017.10.074
  • Choque Delgado, G. T. C., & Tamashiro, W. M. D. S. C. (2018). Role of prebiotics in regulation of microbiota and prevention of obesity. Food Research International, 113, 183–188. doi:10.1016/j.foodres.2018.07.013
  • Clemente, J. C., Ursell, L. K., Parfrey, L. W., & Knight, R. (2012). The impact of the gut microbiota on human health: An integrative view. Cell, 148, 1258–1270. doi:10.1016/j.cell.2012.01.035
  • Conlon, M. A., & Bird, A. R. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 7, 17–44. doi:10.3390/nu7010017
  • Danneskiold-Samsøe, N. B., Dias de Freitas Queiroz Barros, H., Santos, R., Bicas, J. L., Cazarin, C. B. B., Madsen, L., … Maróstica Júnior, M. R. (2018). Interplay between food and gut microbiota in health and disease. Food Research International. doi:10.1016/j.foodres.2018.07.043
  • DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., … Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 5069–5072. doi:10.1128/AEM.03006-05
  • Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461. doi:10.1093/bioinformatics/btq461
  • Griffiths, E. A., Duffy, L. C., Schanbacher, F. L., Qiao, H., Dryja, D., Leavens, A., … Ogra, P. L. (2004). In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice. Digestive Diseases and Sciences, 49, 579–589. doi:10.1023/b:ddas.0000026302.92898.ae
  • Guncheva, M., Zhiryakova, D., Radchenkova, N., & Kambourova, M. (2008). Acidolysis of tripalmitin with oleic acid catalyzed by a newly isolated thermostable lipase. Journal of the American Oil Chemists’ Society, 85, 129–132. doi:10.1007/s11746-007-1175-9
  • He, J., & Giusti, M. M. (2010). Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology, 1, 163–187. doi:10.1146/annurev.food.080708.100754
  • Holscher, H. D., Czerkies, L. A., Cekola, P., Litov, R., Benbow, M., Santema, S., … Tappenden, K. A. (2012). Bifidobacterium lactis Bb12 enhances intestinal antibody response in formula-fed infants: A randomized, double-blind, controlled trial. JPEN. Journal of Parenteral and Enteral Nutrition, 36, 106S–117S. doi:10.1177/0148607111430817
  • Jiménez, M. J., Esteban, L., Robles, A., Hita, E., González, P. A., Muñío, M. M., & Molina, E. (2010). Production of triacylglycerols rich in palmitic acid at position 2 as intermediates for the synthesis of human milk fat substitutes by enzymatic acidolysis. Process Biochemistry, 45, 407–414. doi:10.1016/j.procbio.2009.10.018
  • Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A., & Kimura, I. (2015). Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 7, 2839–2849. doi:10.3390/nu7042839
  • Kemperman, R. A., Gross, G., Mondot, S., Possemiers, S., Marzorati, M., van de Wiele, T., … Vaughan, E. E. (2013). Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Research International, 53, 659–669. doi:10.1016/j.foodres.2013.01.034
  • Langevin, F., Crossan, G. P., Rosado, I. V., Arends, M. J., & Patel, K. J. (2011). Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature, 475, 53–58. doi:10.1038/nature10192
  • Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., … Pedersen, O. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500, 541–546. doi:10.1038/nature12506
  • Lee, J. H., Son, J. M., Akoh, C. C., Kim, M. R., & Lee, K. T. (2010). Optimized synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich triacylglycerol via interesterification catalyzed by a lipase from Thermomyces lanuginosus. New Biotechnology, 27, 38–45. doi:10.1016/j.nbt.2009.10.006
  • Li, D., Wang, P., Wang, P., Hu, X., & Chen, F. (2016). The gut microbiota: A treasure for human health. Biotechnology Advances, 34, 1210–1224. doi:10.1016/j.biotechadv.2016.08.003
  • Li, W., Wang, K., Sun, Y., Ye, H., Hu, B., & Zeng, X. (2015). Influencesc of structures of galactooligosaccharides and fructooligosaccharides on the fermentation in vitro by human intestinal microbiota. Journal of Functional Foods, 13, 158–168. doi:10.1016/j.jff.2014.12.044
  • Li, Y., Mu, H., Andersen, J. E. T., Xu, X., Meyer, O., & Ørngreen, A. (2010). New human milk fat substitutes from butterfat to improve fat absorption. Food Research International, 43, 739–744. doi:10.1016/j.foodres.2009.11.006
  • Liu, Y., Gibson, G. R., & Walton, G. E. (2016). An in vitro approach to study effects of prebiotics and probiotics on the faecal microbiota and selected immune parameters relevant to the elderly. PloS One, 11(9), e0162604. doi:10.1371/journal.pone.0162604
  • Ma, G., Kimatu, B. M., Zhao, L., Yang, W., Pei, F., & Hu, Q. (2017). In vivo fermentation of a Pleurotus eryngii polysaccharide and its effects on fecal microbiota composition and immune response. Food and Function, 8, 1810–1821. doi:10.1039/c7fo00341b
  • Magoč, T., & Salzberg, S. L. (2011). Flash: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957–2963. doi:10.1093/bioinformatics/btr507
  • Morais, M. B., & Jacob, C. M. (2006). The role of probiotics and prebiotics in pediatric practice. Jornal De Pediatria, 82, S189–S197. doi:10.2223/JPED.1559
  • Mu, H. (2010). Production and nutritional aspects of human milk fat substitutes. Lipid Technology, 22, 126–129. doi:10.1002/lite.201000025
  • Nash, V., Ranadheera, C. S., Georgousopoulou, E. N., Mellor, D. D., Panagiotakos, D. B., McKune, A. J., … Naumovski, N. (2018). The effects of grape and red wine polyphenols on gut microbiota - A systematic review. Food Research International, 113, 277–287. doi:10.1016/j.foodres.2018.07.019
  • Neyrinck, A. M., Schüppel, V. L., Lockett, T., Haller, D., & Delzenne, N. M. (2016). Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models? Trends in Food Science and Technology, 57, 256–264. doi:10.1016/j.tifs.2016.08.012
  • Oliveira, D. L., Wilbey, R. A., Grandison, A. S., & Roseiro, L. B. (2015). Milk oligosaccharides: A review. International Journal of Dairy Technology, 68(3), 305-321. doi:10.1111/1471-0307.12209
  • Philp, A., Macdonald, A. L., & Watt, P. W. (2005). Lactate – A signal coordinating cell and systemic function. Journal of Experimental Biology, 208, 4561–4575. doi:10.1242/jeb.01961
  • Richards, J. L., Yap, Y. A., McLeod, K. H., Mackay, C. R., & Mariño, E. (2016). Dietary metabolites and the gut microbiota: An alternative approach to control inflammatory and autoimmune diseases. Clinical and Translational Immunology, 5, e82. doi:10.1038/cti.2016.29
  • Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., De Los Reyes-Gavilán, C. G. D. L., & Salazar, N. (2016). Intestinal short chain fatty acids and their link with diet and human health. Frontiers in Microbiology, 7, 185. doi:10.3389/fmicb.2016.00185
  • Robles, A., Jiménez, M. J., Esteban, L., González, P. A., Martín, L., Rodríguez, A., & Molina, E. (2011). Enzymatic production of human milk fat substitutes containing palmitic and docosahexaenoic acids at sn-2 position and oleic acid at sn-1,3 positions. LWT - Food Science and Technology, 44, 1986–1992. doi:10.1016/j.lwt.2011.05.022
  • Schippa, S., & Conte, M. P. (2014). Dysbiotic events in gut microbiota: Impact on human health. Nutrients, 6, 5786–5805. doi:10.3390/nu6125786
  • Schwiertz, A., Taras, D., Schäfer, K., Beijer, S., Bos, N. A., Donus, C., & Hardt, P. D. (2010). Microbiota and scfa in lean and overweight healthy subjects. Obesity, 18, 190–195. doi:10.1038/oby.2009.167
  • Shannon, C. E. (1948a). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x
  • Shannon, C. E. (1948b). A mathematical theory of communication. Bell System Technical Journal, 27, 623–656. doi:10.1002/j.1538-7305.1948.tb00917.x
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504. doi:10.1101/gr.1239303
  • Shin, N. R., Whon, T. W., & Bae, J. W. (2015). Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 33, 496–503. doi:10.1016/j.tibtech.2015.06.011
  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688–689. doi:10.1038/163688a0
  • Sivieri, K., Bianchi, F., Tallarico, M. A., & Rossi, E. A. (2011). Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by probiotic Enterococcus faecium CRL 183. Functional Foods in Health and Disease, 1, 389–402. doi:10.31989/ffhd.v1i10.119
  • Sjögren, Y. M., Tomicic, S., Lundberg, A., Böttcher, M. F., Björkstén, B., Sverremark-Ekström, E., & Jenmalm, M. C. (2009). Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clinical and Experimental Allergy, 39, 1842–1851. doi:10.1111/j.1365-2222.2009.03326.x
  • Sonnenburg, J. L., & Bäckhed, F. (2016). Diet-microbiota interactions as moderators of human metabolism. Nature, 535, 56–64. doi:10.1038/nature18846
  • Sun, C., Wei, W., Su, H., Zou, X., & Wang, X. (2018). Evaluation of sn −2 fatty acid composition in commercial infant formulas on the Chinese market: A comparative study based on fat source and stage. Food Chemistry, 242, 29–36. doi:10.1016/j.foodchem.2017.09.005
  • Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119. doi:10.1016/B978-0-12-800100-4.00003-9
  • Tomás-Barberán, F. A., Selma, M. V., & Espín, J. C. (2016). Interactions of gut microbiota with dietary polyphenols and consequences to human health. Current Opinion in Clinical Nutrition and Metabolic Care, 19, 471–476. doi:10.1097/MCO.0000000000000314
  • Ventura, M., O’Toole, P. W., De Vos, W. M., & Van Sinderen, D. (2018). Selected aspects of the human gut microbiota. Cellular and Molecular Life Sciences: CMLS, 75, 81–82. doi:10.1007/s00018-017-2669-8
  • Vernocchi, P., Del Chierico, F. D., & Putignani, L. (2016). Gut microbiota profiling: Metabolomics based approach to unravel compounds affecting human health. Frontiers in Microbiology, 7, 1144. doi:10.3389/fmicb.2016.01144
  • Vulevic, J., Rastall, R. A., & Gibson, G. R. (2004). Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides. FEMS Microbiology Letters, 236, 153–159. doi:10.1016/j.femsle.2004.05.036
  • Wang, Z., Xiao, G., Yao, Y., Guo, S., Lu, K., & Sheng, Z. (2006). The role of bifidobacteria in gut barrier function after thermal injury in rats. Journal of Trauma, 61, 650–657. doi:10.1097/01.ta.0000196574.70614.27
  • Xie, M., Chen, G., Wan, P., Dai, Z., Hu, B., Chen, L., … Sun, Y. (2017). Modulating effects of dicaffeoylquinic acids from ilex kudingcha on intestinal microecology in vitro. Journal of Agricultural and Food Chemistry, 65, 10185–10196. doi:10.1021/acs.jafc.7b03992
  • Yang, J., & Yu, J. (2018). The association of diet, gut microbiota and colorectal cancer: What we eat may imply what we get. Protein and Cell, 9, 474–487. doi:10.1007/s13238-018-0543-6
  • Yang, T., Xu, X., He, C., & Li, L. (2003). Lipase-catalyzed modification of lard to produce human milk fat substitutes. Food Chemistry, 80, 473–481. doi:10.1016/S0308-8146(02)00315-1
  • Yao, M., Lien Eric, L., Capeding Maria, R. Z., Fitzgerald, M., Ramanujam, K., Yuhas, R., … DeRusso Patricia, A. (2014). Effects of term infant formulas containing high sn-2 palmitate with and without oligofructose on stool composition, stool characteristics, and bifidogenicity. JPGN, 59, 440–448.
  • Zhang, X., Zhu, X., Sun, Y., Hu, B., Sun, Y., Jabbar, S., & Zeng, X. (2013). Fermentation in vitro of EGCG, GCG and EGCG3”me isolated from oolong tea by human intestinal microbiota. Food Research International, 54, 1589–1595. doi:10.1016/j.foodres.2013.10.005
  • Zhu, G., Ma, F., Wang, G., Wang, Y., Zhao, J., Zhang, H., & Chen, W. (2018). Bifidobacteria attenuate the development of metabolic disorders, with inter- and intra-species differences. Food and Function, 9, 3509–3522. doi:10.1039/c8fo00100f
  • Zou, X., Jin, Q., Guo, Z., Xu, X., & Wang, X. (2016). .Preparation and characterization of human milk fat substitutes based on triacylglycerol profiles. Journal of the American Oil Chemists’ Society, 93, 781–792. doi:10.1007/s11746-016-2816-7