1,474
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimization of extraction conditions for functional compounds from thinned unripe apple using β-cyclodextrin-based ultrasound-assisted extraction

&
Pages 10-19 | Received 16 Jun 2022, Accepted 05 Dec 2022, Published online: 03 Jan 2023

References

  • Aguilera, Y., Rebollo-Hernanz, M., Cañas, S., Taladrid, D., & Martín-Cabrejas, M. A. (2019). Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food & Function, 10(8), 4739–4750. https://doi.org/10.1039/c9fo00544g
  • Alibante, A., Lakka, A., Bozinou, E., Chatzilazarou, A., Lalas, S., & Makris, D. P. (2021). Integrated green process for the extraction of red grape pomace antioxidant polyphenols using ultrasound-assisted pretreatment and β-cyclodextrin. Beverages, 7(3), 59. https://doi.org/10.3390/beverages7030059
  • Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295–315. https://doi.org/10.1111/1541-4337.12253
  • Belwal, T., Dhyani, P., Bhatt, I. D., Rawal, R. S., & Pande, V. (2016). Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chemistry, 207, 115–124. https://doi.org/10.1016/j.foodchem.2016.03.081
  • Cai, R., Yuan, Y., Cui, L., Wang, Z., & Yue, T. (2018). Cyclodextrin-assisted extraction of phenolic compounds: Current research and future prospects. Trends in Food Science & Technology, 79, 19–27. https://doi.org/10.1016/j.tifs.2018.06.015
  • Ćujić, N., Šavikin, K., Janković, T., Pljevljakušić, D., Zdunić, G., & Ibrić, S. (2016). Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry, 194, 135–142. https://doi.org/10.1016/j.foodchem.2015.08.008
  • D’Alessandro, L. G., Kriaa, K., Nikov, I., & Dimitrov, K. (2012). Ultrasound assisted extraction of polyphenols from black chokeberry. Separation and Purification Technology, 93, 42–47. https://doi.org/10.1016/j.seppur.2012.03.024
  • Favre, L. C., Rolandelli, G., Mshicileli, N., Vhangani, L. N., Ferreira, C. D. S., Wyk, J. V., & Buera, M. D. P. (2020). Antioxidant and anti-glycation potential of green pepper (Piper nigrum): Optimization of β-cyclodextrin-based extraction by response surface methodology. Food Chemistry, 316, 126280. https://doi.org/10.1016/j.foodchem.2020.126280
  • Folin, O., & Denis, W. (1912). On phosphotungstic-phosphomolybdic compounds as color reagents. The Journal of Biological Chemistry, 12(2), 239–243. https://doi.org/10.1016/s0021-9258(18)88697-5
  • Ghafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57(11), 4988–4994. https://doi.org/10.1021/jf9001439
  • Gligor, O., Mocan, A., Moldovan, C., Locatelli, M., Crișan, G., & Ferreira, I. C. F. R. (2019). Enzyme-assisted extractions of polyphenols – a comprehensive review. Trends in Food Science & Technology, 88, 302–315. https://doi.org/10.1016/j.tifs.2019.03.029
  • Hanrahan, G., & Lu, K. (2006). Application of factorial and response surface methodology in modern experimental design and optimization. Critical Reviews in Analytical Chemistry, 36(3–4), 141–151. https://doi.org/10.1080/10408340600969478
  • Hernández-Carranza, P., Ávila-Sosa, R., Guerrero-Beltrán, J. A., Navarro-Cruz, A. R., Corona-Jiménez, E., & Ochoa-Velasco, C. E. (2016). Optimization of antioxidant compounds extraction from fruit by-products: Apple pomace, orange and banana peel. Journal of Food Processing and Preservation, 40(1), 103–115. https://doi.org/10.1111/jfpp.12588
  • Kang, K. M., & Lee, S. H. (2013). Effects of extraction methods on the antioxidative activity of Artemisia sp. Journal of the Korean Society of Food Science and Nutrition, 42(8), 1249–1254. https://doi.org/10.3746/jkfn.2013.42.8.1249
  • Karmoker, J. R., Hasan, I., Ahmed, N., Saifuddin, M., & Reza, M. S. (2019). Development and optimization of Acyclovir loaded mucoadhesive microspheres by Box–Behnken Design. Dhaka University Journal of Pharmaceutical Sciences, 18(1), 1–12. https://doi.org/10.3329/dujps.v18i1.41421
  • Kim, J. M., & Yoon, K. Y. (2020). Determination of protein extraction and trypsin hydrolysis conditions for producing hydrolysates with antioxidant activity from perilla seed meal. Korean Journal of Food Preservation, 27(6), 791–799. https://doi.org/10.11002/kjfp.2020.27.6.791
  • Lee, J. J., & Yoon, K. Y. (2021). Optimization of ultrasound-assisted extraction of phenolic compounds from bitter melon (Momordica charantia) using response surface methodology. CyTA – Journal of Food, 19(1), 721–728. https://doi.org/10.1080/19476337.2021.1973110
  • Liaudanskas, M., Viškelis, P., Kviklys, D., Raudonis, R., & Janulis, V. (2015). A comparative study of phenolic content in apple fruits. International Journal of Food Properties, 18(5), 945–953. https://doi.org/10.1080/10942912.2014.911311
  • Liyana-Pathirana, C., & Shahidi, F. (2005). Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry, 93(1), 47–56. https://doi.org/10.1016/j.foodchem.2004.08.050
  • Maraulo, G. E., Ferreira, C. S., & Mazzobre, M. F. (2020). β-cyclodextrin enhanced ultrasound-assisted extraction as a green method to recover olive pomace bioactive compounds. Journal of Food Processing and Preservation, 45(3), e15194. https://doi.org/10.1111/jfpp.15194
  • Maraulo, G. E., Ferreira, C. S., & Mazzobre, M. F. (2021). β-cyclodextrin enhanced ultrasound-assisted extraction as a green method to recover olive pomace bioactive compounds. Journal of Food Processing and Preservation, 45(3), e15194. https://doi.org/10.1111/jfpp.15194
  • Matencio, A., Navarro-Orcajada, S., García-Carmona, F., & López-Nicolás, J. M. (2020). Applications of cyclodextrins in food science. A review. Trends in Food Science & Technology, 104, 132–143. https://doi.org/10.1016/j.tifs.2020.08.009
  • Mengyuan, W., Haoli, W., Tingting, M., Qian, G., Yulin, F., & Xiangyu, S. (2021). Comprehensive utilization of thinned unripe fruits from horticultural crops. Foods, 10(9), 2043. https://doi.org/10.3390/foods10092043
  • Olga, G., Styliani, C., & Ioannis, R. G. (2015). Coencapsulation of ferulic and gallic acid in hp-b-cyclodextrin. Food Chemistry, 185, 33–40. https://doi.org/10.1016/j.foodchem.2015.03.058
  • Parmar, I., Sharma, S., & Rupasinghe, H. P. V. (2015). Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology. Journal of Food Science and Technology, 52(4), 2202–2210. https://doi.org/10.1007/s13197-014-1282-1
  • Patocka, J., Bhardwaj, K., Klimova, B., Nepovimova, E., Wu, Q., Landi, M., Kuca, K., Valis, M., & Wu, W. (2020). Malus domestica: A review on nutritional features, chemical composition, traditional and medicinal value. Plants, 9(11), 1–19. https://doi.org/10.3390/plants9111408
  • Pinho, E., Grootveld, M., Soares, G., & Henriques, M. (2014). Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydrate Polymers, 101(1), 121–135. https://doi.org/10.1016/j.carbpol.2013.08.078
  • Rajha, H. N., Chacar, S., Afif, C., Vorobiev, E., Louka, N., & Maroun, R. G. (2015). β-Cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars. Journal of Agricultural and Food Chemistry, 63(13), 3387–3393. https://doi.org/10.1021/acs.jafc.5b00672
  • Rana, S., & Bhushan, S. (2016). Apple phenolics as nutraceuticals: Assessment, analysis and application. Journal of Food Science and Technology, 53(4), 1727–1738. https://doi.org/10.1007/s13197-015-2093-8
  • Saifullah, M., McCullum, R., McCluskey, A., & Vuong, Q. (2020). Comparison of conventional extraction technique with ultrasound assisted extraction on recovery of phenolic compounds from lemon scented tea tree (Leptospermum petersonii) leaves. Heliyon, 6(4), e03666. https://doi.org/10.1016/j.heliyon.2020.e03666
  • Shao, P., Zhang, J., Fang, Z., & Sun, P. (2014). Complexing of chlorogenic acid with β-cyclodextrins: Inclusion effects, antioxidative properties and potential application in grape juice. Food Hydrocolloids, 41, 132–139. https://doi.org/10.1016/j.foodhyd.2014.04.003
  • Silva, L. C., Viganó, J., de Souza Mesquita, L. M., Dias, A. L. B., de Souza, M. C., Sanches, V. L., Chaves, J. O., Pizani, R. S., Contieri, L. S., & Rostagno, M. A. (2021). Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products. Food Chemistry, 12, 100133. https://doi.org/10.1016/j.fochx.2021.100133
  • Skinner, R. C., Gigliotti, J. C., Ku, K. M., & Tou, J. C. (2018). A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutrition Reviews, 76(12), 893–909. https://doi.org/10.1093/nutrit/nuy033
  • Wojdyło, A., Nowicka, P., Turkiewicz, I. P., Tkacz, K., & Hernandez, F. (2021). Comparison of bioactive compounds and health promoting properties of fruits and leaves of apple, pear and quince. Scientific reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-99293-x
  • Xie, J., Xu, Y., Shishir, M. R. I., Zheng, X., & Chen, W. (2019). Green extraction of mulberry anthocyanin with improved stability using β-cyclodextrin. Journal of the Science of Food and Agriculture, 99(5), 2494–2503. https://doi.org/10.1002/jsfa.9459
  • Yolmeh, M., & Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10(3), 413–433. https://doi.org/10.1007/s11947-016-1855-2
  • Zhang, Z., Poojary, M. M., Choudhary, A., Rai, D. K., & Tiwari, B. K. (2018). Comparison of selected clean and green extraction technologies for biomolecules from apple pomace. Electrophoresis, 39(15), 1934–1945. https://doi.org/10.1002/elps.201800041
  • Zhao, T., Sun, L., Wang, Z., Nisar, T., Gong, T., Li, D., Niu, P., & Guo, Y. (2019). The antioxidant property and α-amylase inhibition activity of young apple polyphenols are related with apple varieties. LWT, 111, 252–259. https://doi.org/10.1016/j.lwt.2019.05.006
  • Zhao, M., Wang, H., Yang, B., & Tao, H. (2010). Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chemistry, 120(4), 1138–1142. https://doi.org/10.1016/j.foodchem.2009.11.044
  • Zheng, H. Z., Kim, Y. I., & Chung, S. K. (2012). A profile of physicochemical and antioxidant changes during fruit growth for the utilisation of unripe apples. Food Chemistry, 131(1), 106–110. https://doi.org/10.1016/j.foodchem.2011.08.038
  • Zhou, J., Zheng, X., Yang, Q., Liang, Z., Li, D., Yang, X., & Xu, J. (2013). Optimization of ultrasonic-assisted extraction and radical-scavenging capacity of phenols and flavonoids from Clerodendrum cyrtophyllum Turcz Leaves. Plos One, 8(7), 1–8. https://doi.org/10.1371/journal.pone.0068392