1,232
Views
2
CrossRef citations to date
0
Altmetric
Research Article

HMG – CoA reductase inhibition mediated hypocholesterolemic potential of myricetin and quercetin: in-silico and in-vivo studies

, , , & ORCID Icon
Pages 115-125 | Received 18 Nov 2022, Accepted 20 Dec 2022, Published online: 17 Jan 2023

References

  • Abbas, M., Saeed, F., Anjum, F. M., Afzaal, M., Tufail, T., Bashir, M. S., Ishtiaq, A., Hussain, S., & Suleria, H. A. R. (2017). Natural polyphenols: An overview. International Journal of Food Properties [Internet], 20(8), 1689–1699. Taylor & Francis. https://doi.org/10.1080/10942912.2016.1220393
  • Abel, L. L., Levy, B. B., Brodie, B. B., & Kendall, F. E. (1952). A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. The Journal of Biological Chemistry, 195(1), 357–366. https://doi.org/10.1016/S0021-9258(19)50907-3
  • Agraharam, G., Girigoswami, A., & Girigoswami, K. (2022). Myricetin: A multifunctional flavonol in biomedicine. Current Pharmacology Reports [Internet], 8(1), 48–61. Springer International Publishing. https://doi.org/10.1007/s40495-021-00269-2
  • Ali, S., Hassan, M., Islam, A., & Ahmad, F. (2014). A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Current Protein and Peptide Science, 15(5), 456–476. https://doi.org/10.2174/1389203715666140327114232
  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry, 9, 1–21. https://doi.org/10.3389/fchem.2021.661230
  • Asgharian, P., Tazekand, A. P., Hosseini, K., Forouhandeh, H., Ghasemnejad, T., Ranjbar, M., Hasan, M., Kumar, M., Beirami, S. M., Tarhriz, V., Soofiyani, S. R., Kozhamzharova, L., Sharifi-Rad, J., Calina, D., & Cho, W. C. (2022). Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets. Cancer cell international [Internet], 22(1), 1–20. BioMed Central. https://doi.org/10.1186/s12935-022-02677-w
  • Assaad, H. I., Zhou, L., Carroll, R. J., & Wu, G. (2014). Rapid publication-ready MS-Word tables for one-way ANOVA. Springerplus, 3(1), 1–8. https://doi.org/10.1186/2193-1801-3-474
  • Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
  • Bhardwaj, S., Bhattacharjee, J., Bhatnagar, M. K., & Tyagi, S. (2013). Atherogenic index of plasma, castelli risk index and atherogenic coefficient - New parameters in assessing cardiovascular risk. International Journal of Pharmacy and Biological Sciences [Internet], 3, 359–364. https://www.ijpbs.com/ijpbsadmin/upload/ijpbs_526938e855804.pdf
  • Bhat, V., & Chatterjee, J. (2021). The use of in silico tools for the toxicity prediction of potential inhibitors of SARS-CoV-2. Alternatives to Laboratory Animals, 49(1–2), 22–32. https://doi.org/10.1177/02611929211008196
  • Bucolo, G., & David, H. (1973). Quantitative determination of serum triglycerides by the use of enzymes. Clinical Chemistry, 19(5), 476–482. https://doi.org/10.1093/clinchem/19.5.476
  • Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310. https://doi.org/10.1016/s0076-6879(78)52032-6
  • Charan, J., Riyad, P., Ram, H., Purohit, A., Ambwani, S., Kashyap, P., Singh, G., Hashem, A., Abd_Allah, E. F., Gupta, V. K., & Kumar, A. (2022). Ameliorations in dyslipidemia and atherosclerotic plaque by the inhibition of HMG-CoA reductase and antioxidant potential of phytoconstituents of an aqueous seed extract of Acacia senegal (L.) Willd in rabbits. Plos One, 264646. https://doi.org/10.1371/journal.pone.0264646
  • Chouhan, H., Purohit, A., Ram, H., Chowdhury, S., Kashyap, P., Panwar, A., & Kumar, A. (2021). The interaction capabilities of phytoconstituents of ethanolic seed extract of cumin (Cuminum cyminum L.) with HMG-CoA reductase to subside the hypercholesterolemia: A mechanistic approach. Food Frontiers, 3(2), 1–16. https://doi.org/10.1002/fft2.122
  • Derosa, G., Maffioli, P., D’Angelo, A., & DiPierro, F. (2021). A role for quercetin in coronavirus disease 2019 (COVID-19). Phytotherapy Research, 35(3), 1230–1236. https://doi.org/10.1002/ptr.6887
  • DiPierro, F., Iqtadar, S., Khan, A., Ullah Mumtaz, S., Masud Chaudhry, M., Bertuccioli, A., Derosa, G., Maffioli, P., Togni, S., Riva, A., Allegrini, P., & Khan, S. (2021). Potential clinical benefits of quercetin in the early stage of COVID-19: Results of a second, pilot, randomized, controlled and open-label clinical trial. International Journal of General Medicine, 14, 2807–2816. https://doi.org/10.2147/IJGM.S318949
  • Fatriansyah, J. F., Rizqillah, R. K., Yandi, M. Y., Fadilah, S. M., & Sahlan, M. (2022). Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2. Journal of King Saud University - Science [Internet], 34(1), 1–9. The Author(s). https://doi.org/10.1016/j.jksus.2021.101707
  • Fintelman-Rodrigues, N., Wang, X., Sacramento, C. Q., Temerozo, J. R., Ferreira, A. C., Mattos, M., Mattos, M., Pereira Dutra, F., Bozza, P. T., Castro-Faria-Neto, H. C., Russo, J. J., Ju, J., & Souza, T. M. L. (2022). Commercially available flavonols are better SARS-CoV-2 inhibitors than isoflavone and flavones. Viruses, 14(7), 1–17. https://doi.org/10.3390/v14071458
  • Francis, A. A., & Pierce, G. N. (2011). An integrated approach for the mechanisms responsible for atherosclerotic plaque regression. Experimental and Clinical Cardiology, 16(3), 77–86.
  • Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499–502. https://doi.org/10.1093/clinchem/18.6.499
  • Hadwan, M. H. (2018). Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochemistry, 19(1), 1–8. https://doi.org/10.1186/s12858-018-0097-5
  • Hirano, T., Nohtomi, K., Koba, S., Muroi, A., & Ito, Y. (2008). A simple and precise method for measuring HDL-cholesterol subfractions by a single precipitation followed by homogenous HDL-cholesterol assay. Journal of Lipid Research, 49(5), 1130–1136. https://doi.org/10.1194/jlr.D700027-JLR200
  • James, M., Murtola, T., Schulz, R., Smith, J. C., Hess, B., Lindahl, E., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softw X, 2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Jiang, S. Y., Li, H., Tang, J. J., Wang, J., Luo, J., Liu, B., Wang, J. K., Shi, X. J., Cui, H. W., Tang, J., Yang, F., Qi, W., Qiu, W. W., & Song, B. L. (2018). Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nature Communications [Internet], 9(1), 1–13. https://doi.org/10.1038/s41467-018-07590-3
  • Kaliora, A. C., Dedoussis, G. S. V., & Schmidt, H. (2006). Dietary antioxidants in preventing atherogenesis [Internet]. Atherosclerosis, 187(1), 1–17. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L43817017%0A10.1016/j.atherosclerosis.2005.11.001%0Ahttp://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=00219150&id=doi:10.1016%2Fj.atherosclerosis.2005.11.001&atitle=
  • Kamoru, A. A., Japhet, O. M., Adetunji, A. D., Musa, M. A., Hammed, O. O., & Akinlawon, A. A., Abdufatah, O. A., Taofik, A. A., Kabiru, A. A., & Roji, S. M. (2017). Castelli risk index, atherogenic index of plasma, and atherogenic coefficient: Emerging risk predictors of cardiovascular disease in HIV-treated patients. International Journal Clinical Trials & Case Studies [Internet], 2, 8–15. http://scholarsmepub.com/sjmps/Website:http://scholarsmepub.com/
  • Keller, T. H., Pichota, A., & Yin, Z. (2006). A practical view of ‘druggability’. Current Opinion in Chemical Biology, 10(4), 357–361. https://doi.org/10.1016/j.cbpa.2006.06.014
  • Koleva, D. I., Andreeva-Gateva, P. A., Orbetzova, M. M., & Atanassova, I. B. (2015). Atherogenic index of plasma, castelli risk indexes and leptin/adiponectin ratio in women with metabolic syndrome. International Journal of Pharmaceutical and Medicinal Research [Internet], 6, 12–18. https://www.woarjournals.org/admin/volissue2/upload Image/IJPMR031506.pdf
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Lu, J., Papp, L. V., Fang, J., Rodriguez-Nieto, S., Zhivotovsky, B., & Holmgren, A. (2006). Inhibition of mammalian thioredoxin reductase by some flavonoids: Implications for myricetin and quercetin anticancer activity. Cancer Research, 66(8), 4410–4418. https://doi.org/10.1158/0008-5472.CAN-05-3310
  • Lu, D., Shen, L., Mai, H., Zang, J., Liu, Y., Tsang, C. K., Li, K., & Xu, A. (2019). HMG-CoA reductase inhibitors attenuate neuronal damage by suppressing oxygen glucose deprivation-induced activated microglial cells. Neural Plasticity, 2019, 1–15. https://doi.org/10.1155/2019/7675496
  • Ma, J., Liu, J., Chen, Y., Yu, H., & Xiang, L. (2022). Myricetin improves impaired nerve functions in experimental diabetic rats. Frontiers in Endocrinology, 13, 1–9. https://doi.org/10.3389/fendo.2022.915603
  • Mannino, G., Iovino, P., Lauria, A., Genova, T., Asteggiano, A., Notarbartolo, M., Porcu, A., Serio, G., Chinigò, G., Occhipinti, A., Capuzzo, A., Medana, C., Munaron, L., & Gentile, C. (2021). Bioactive triterpenes of protium heptaphyllum gum resin extract display cholesterol-lowering potential. International Journal of Molecular Sciences, 22(5), 1–22. https://doi.org/10.3390/ijms22052664
  • Markowska, A., Antoszczak, M., Markowska, J., & Statins, H. A. (2020). HMG-CoA reductase inhibitors as potential anticancer agents against malignant neoplasms in women. Pharmaceuticals, 13(12), 1–13. https://doi.org/10.3390/ph13120422
  • Mutha, R. E., Tatiya, A. U., & Surana, S. J. (2021). Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future Journal of Pharmaceutical Sciences, 7(1), 1–13. https://doi.org/10.1186/s43094-020-00161-8
  • Papakyriakopoulou, P., Velidakis, N., Khattab, E., Valsami, G., Korakianitis, I., & Kadoglou, N. P. E. (2022). Potential pharmaceutical applications of quercetin in cardiovascular diseases. Pharmaceuticals, 15(8), 1–23. https://doi.org/10.3390/ph15081019
  • Rahman, I., Kode, A., & Biswas, S. K. (2007). Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature protocols, 1(6), 3159–3165. https://doi.org/10.1038/nprot.2006.378
  • Ramya, S., Murugan, M., Krishnaveni, K., Sabitha, M., Kandeepan, C., & Jayakumararaj, R. (2022). In-silico ADMET profile of ellagic acid from syzygium cumini: a natural biaryl polyphenol with therapeutic potential to overcome diabetic associated vascular complications. Journal of Drug Delivery and Therapeutics, 12(1), 91–101. https://doi.org/10.22270/jddt.v12i1.5179
  • Rizvi, S. M. D., Shazi, S., & Haneef, M. (2013). A simple click by click protocol to perform docking: Autodock 4.2 made easy for non-bioinformaticians. EXCLI journal, 12, 831–857.
  • Sampangi-Ramaiah, M. H., Vishwakarma, R., & Shaanker, R. U. (2020). Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Current Science, 118(7), 1087–1092. https://doi.org/10.18520/cs/v118/i7/1087-1092
  • Sarian, M. N., Ahmed, Q. U., Mat So’Ad, S. Z., Alhassan, A. M., Murugesu, S., Perumal, V., Syed Mohamad, S. N. A., Khatib, A., & Latip, J. (2017). Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International, 2017, 1–14. https://doi.org/10.1155/2017/8386065
  • Septembre-Malaterre, A., Boina, C., Gasque, P., Guiraud, P., Jimmy, S., Guiraud, P., & Sélambarom, J. (2020). Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine Plus, 2(1), 1–18. https://doi.org/10.1016/j.phyplu.2022.100220
  • Suganya, S., Nandagopal, B., & Anbarasu, A. (2017). Natural inhibitors of HMG-CoA reductase—An insilico approach through molecular docking and simulation studies. Journal of Cellular Biochemistry, 118(1), 52–57. https://doi.org/10.1002/jcb.25608
  • Suganya, S., Natarajan, S., Chamundeeswari, D., Anbarasu, A., Balasubramanian, K. A., Schneider, L. C., & Nandagopal, B. (2017). Clinical evaluation of a polyherbal nutritional supplement in dyslipidemic volunteers. Journal of Dietary Supplements [Internet], 14(6), 679–690. Taylor & Francis. https://doi.org/10.1080/19390211.2017.1305478
  • Sultana, B., & Anwar, F. (2008). Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chemistry, 108(3), 879–884. https://doi.org/10.1016/j.foodchem.2007.11.053
  • Taheri, Y., Suleria, H. A. R., Martins, N., Sytar, O., Beyatli, A., Yeskaliyeva, B., Seitimova, G., Salehi, B., Semwal, P., Painuli, S., Kumar, A., Azzini, E., Martorell, M., Setzer, W. N., Maroyi, A., & Sharifi-Rad, J. (2020). Myricetin bioactive effects: Moving from preclinical evidence to potential clinical applications. BMC Complementary Medicine and Therapies, 20(1), 1–14. https://doi.org/10.1186/s12906-020-03033-z
  • Usha, T., Shanmugarajan, D., Goyal, A. K., Kumar, C. S., & Middha, S. K. (2018). Recent updates on computer-aided drug discovery: Time for a paradigm shift. Current Topics in Medicinal Chemistry, 17(30), 3296–3307. https://doi.org/10.2174/1568026618666180101163651
  • Vettor, R., & Serra, R. (2018). Management of hypercholesterolemia, appropriateness of therapeutic approaches and new drugs in patients with high cardiovascular risk. Italian Journal of Medicine, 12(3), 203–212. https://doi.org/10.4081/itjm.2018.1062
  • Zhang, Q., Song, W., Zhao, B., Xie, J., Sun, Q., Shi, X., Yan, B., Tian, G., & Liang, X. (2021). Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of AMPK/PGC-1α pathway in vivo and in vitro. Frontiers in Neuroscience, 15, 1–16. https://doi.org/10.3389/fnins.2021.636172