1,638
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioactive compound profile and their biological activities of endogenous black rice from Java and East Nusa Tenggara

, , , , , , , , , & show all
Pages 159-170 | Received 11 Jul 2022, Accepted 02 Jan 2023, Published online: 10 Feb 2023

References

  • Agustika, D. K., Mercuriani, I., Purnomo, C. W., Hartono, S., Triyana, K., Iliescu, D. D., & Leeson, M. S. (2022). Fourier transform infrared spectrum pre-processing technique selection for detecting PYLCV-infected chilli plants. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 278, 121339. https://doi.org/10.1016/j.saa.2022.121339
  • Agustin, A. T., Safitri, A., & Fatchiyah, F. (2021). Java red rice (Oryza sativa L.) nutritional value and anthocyanin profiles and its potential role as Antioxidant and Anti-Diabetic. Indonesian Journal of Chemistry, 21(4), 968–978. https://doi.org/10.22146/ijc.64509
  • Ahliha, A. H., Nurosyid, F., Supriyanto, A., & Kusumaningsih, T. (2018). Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC). IOP Conference Series: Materials Science and Engineering, 333, 012018. https://doi.org/10.1088/1757-899X/333/1/012018
  • Anggaraini, T., Novelina, N., Limber, U., & Amelia, R. (2015). Antioxidant activities of some red, black, and white rice cultivar from West Sumatra, Indonesia. Pakistan Journal of Nutrition, 14(2), 112–117. https://doi.org/10.3923/pjn.2015.112.117
  • Apridamayanti, P., Pratiwi, R., Purwestri, Y. A., Tunjung, W. A. S., & Rumiyati, R. (2017). Anthocyanin, nutrient contents, and antioxidant activity of black rice bran of Oryza sativa L. ‘Cempo Ireng’ from Sleman, Yogyakarta, Indonesia. Indonesian Journal of Biotechnology, 22(1), 49–54. https://doi.org/10.22146/ijbiotech.26401
  • Bhutkar, M. A., & Bhise, S. B. (2012). In vitro assay of alpha amylase inhibitory activity of some indigenous plants. International Journal of Chemistry, 10(1), 457–462.
  • Bhuvaneswari, S., Gopala Krishnan, S., Bollinedi, H., Saha, S., Ellur, R. K., Vinod, K. K., Singh, I. M., Prakash, N., Bhowmick, P. K., Nagarajan, M., Singh, N. K., & Singh, A. K. (2020). Genetic architecture and anthocyanin profiling of aromatic rice from Manipur reveals divergence of Chakhao Landraces. Frontiers in genetics, 11, 570731. https://doi.org/10.3389/fgene.2020.570731
  • Browning, A. M., Walle, U. K., & Walle, T. (2010). Flavonoid glycosides inhibit oral cancer cell proliferation — role of cellular uptake and hydrolysis to the aglycones. The Journal of Pharmacy and Pharmacology, 57(8), 1037–1042. https://doi.org/10.1211/0022357056514
  • Chien, S. C., Wu, Y. C., Chen, Z. W., & Yang, W. C. (2015). Naturally occurring anthraquinones: Chemistry and therapeutic potential in autoimmune diabetes. Evidence-Based Complementary and Alternative Medicine, 2015, 357357. https://doi.org/10.1155/2015/357357
  • Demir, Y., Özaslan, M. S., Duran, H. E., Küfrevioğlu, Ö. İ., & Beydemir, Ş. (2019). Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environmental Toxicology and Pharmacology, 7, 103195. https://doi.org/10.1016/j.etap.2019.103195
  • Deng, G. F., Xu, X. R., Zhang, Y., Li, D., Gan, R. Y., & Bin Li, H. (2013). Phenolic compounds and bioactivities of pigmented rice. Critical Reviews in Food Science and Nutrition, 53(3), 296–306. https://doi.org/10.1080/10408398.2010.529624
  • Dinicolantonio, J. J., Bhutani, J., & O’keefe, J. H. (2015). Acarbose: Safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart, 2(1), e000327. https://doi.org/10.1136/openhrt-2015-000327
  • Fatchiyah, F., Ratih, D., Sari, T., Safitri, A., & Cairns, J. R. K. (2020). Phytochemical compound and nutritional value in black rice from Java Island, Indonesia. Systematic Reviews in Pharmacy, 11(7), 414–421.
  • Fatchiyah, F., Safitri, A., Nikmatu Rohmah, R., Faraline Triprisila, L., Kurnianingsih, N., Nugraha, Y., Fajriani, S., Meidinna, H. N., & Cairns, J. R. K. (2020). The effect of anthocyanin of whole-grain pigmented rice attenuated visceral fat, cholesterol, LDL and PPARγ gene cascade in dyslipidemia rat. Systematic Reviews in Pharmacy, 11(10), 318–327.
  • Favaro, L. I. L., Balcão, V. M., Rocha, L. K. H., Silva, E. C., Oliveira, J. M., Vila, M. M. D. C., & Tubino, M. (2018). Physicochemical characterization of a crude anthocyanin extract from the fruits of jussara (Euterpe edulis Martius): Potential for food and pharmaceutical applications. Journal of the Brazilian Chemical Society, 29(10), 2072–2088. https://doi.org/10.21577/0103-5053.20180082
  • Ghasemzadeh, A., Karbalaii, M. T., Jaafar, H. Z. E., & Rahmat, A. (2018). Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chemistry Central Journal, 12(1), 17. https://doi.org/10.1186/s13065-018-0382-9
  • Godinho, P. I. C., Soengas, R. G., & Silva, V. L. M. (2021). Therapeutic potential of glycosyl flavonoids as anti-coronaviral agents. Pharmaceuticals (Basel), 14(6), 546. https://doi.org/10.3390/ph14060546
  • Gong, H., He, Z., Peng, A., Zhang, X., Cheng, B., Sun, Y., Zheng, L., & Huang, K. (2014). Effects of several quinones on insulin aggregation. Scientific reports, 4(1), 5648. https://doi.org/10.1038/srep05648
  • Gul, R., Jan, S. U., Faridullah, S., Sherani, S., & Jahan, N. (2017). Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. The Scientific World Journal, 2017, 5873648. https://doi.org/10.1155/2017/5873648
  • Gumul, D., & Berski, W. (2021). The polyphenol profile and antioxidant potential of irradiated rye grains. International Journal of Food Science, 2021, 8870754. https://doi.org/10.1155/2021/8870754
  • Hedrington, M. S., & Davis, S. N. (2019). Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opinion on Pharmacotherapy, 20(18), 2229–2235. https://doi.org/10.1080/14656566.2019.1672660
  • Irianto, S., Abdurrachman, H., Sembiring, S., Hendarsih, H., Samaullah, M., & Sasmita, P. (2009). Bagian-7, pedoman umum ip padi 40. Balai Besar Penelitian Tanaman Padi, Balitbang Pertanian.
  • Ito, V. C., & Lacerda, L. G. (2019). Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chemistry, 301, 125304. https://doi.org/10.1016/j.foodchem.2019.125304
  • Jhong, C., & Chia, Y. (2015). Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Biofactors, 41(4), 242–251. https://doi.org/10.1002/biof.1219
  • Ji, Y., Li, B., Qiao, M., Li, J., Xu, H., Zhang, L., & Zhang, X. (2020). Advances on the in vivo and in vitro glycosylations of flavonoids. Applied Microbiology and Biotechnology, 104(15), 6587–6600. https://doi.org/10.1007/s00253-020-10667-z
  • Kartini, K., Putri, L. A. D., & Hadiyat, M. A. (2020). FTIR-based fingerprinting and discriminant analysis of Apium graveolens from different locations. Journal of Applied Pharmaceutical Science, 10(12), 62–67. https://doi.org/10.7324/JAPS.2020.101208
  • Katoh, T., Koguchi, M., Saigusa, N., & Teramoto, Y. (2011). Production and antioxidative activity of mead made from various types of honey and black rice (Oryza sativa var. Indica cv. Shiun). Food Science and Technology Research, 17(2), 149–154. https://doi.org/10.3136/fstr.17.149
  • Kazeem, M. I., Ogunbiyi, J. V., & Ashafa, A. O. T. (2013). In vitro studies on the inhibition of α-Amylase and α- Glucosidase by leaf extracts ofpicralima nitida (stapf). Tropical Journal of Pharmaceutical Research, 12(5), 719–725. https://doi.org/10.4314/tjpr.v12i5.9
  • Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779
  • Kim, T. J., Kim, S. Y., Park, Y. J., Lim, S. H., Ha, S. H., Park, S. U., Lee, B., & Kim, J. K. (2021). Metabolite profiling reveals distinct modulation of complex metabolic networks in non-pigmented, black, and red rice (Oryza sativa L.) Cultivars. Metabolites, 11(6), 367. https://doi.org/10.3390/metabo11060367
  • Kim, J. K., Park, S. Y., Lim, S. H., Yeo, Y., Cho, H. S., & Ha, S. H. (2013). Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. Journal of Cereal Science, 57(1), 14–20. https://doi.org/10.1016/j.jcs.2012.09.012
  • Koziara, Baranowska, Bartoszek, & Namieśnik. (2019). Comparison of Redox properties of flavonoid aglycones and corresponding Glycosides and their mixtures in the cellular model. Proceedings, 11(1), 25. https://doi.org/10.3390/proceedings2019011025
  • Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 1–16. https://doi.org/10.1155/2013/162750
  • Lin, B. W., Gong, C. C., Song, H. F., & Cui, Y. Y. (2017). Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology, 174(11), 1226–1243. https://doi.org/10.1111/bph.v174.11/issuetoc
  • Lu, J.-J., Bao, J.-L., Wu, G.-S., Xu, W.-S., Huang, M.-Q., Chen, X.-P., & Wang, Y.-T. (2014). Quinones derived from plant secondary metabolites as anti-cancer agents. Anti-Cancer Agents in Medicinal Chemistry, 13(3), 456–463. https://doi.org/10.2174/1871520611313030008
  • Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809. https://doi.org/10.3390/molecules25173809
  • Mau, J.-L., Lee, C.-C., Chen, Y.-P., & Lin, S.-D. (2017). Physicochemical, antioxidant and sensory characteristics of chiffon cake prepared with black rice as replacement for wheat flour. LWT - Food Science Technol, 75, 434–439. https://doi.org/10.1016/j.lwt.2016.09.019
  • Meidinna, H. N., & Fatchiyah, F. (2019). The potential role of rosmarinic acid and sinensetin as α-amylase inhibitor: In silico study. The Journal of Pure and Applied Chemistry Research, 8(1), 73–79. https://doi.org/10.21776/ub.jpacr.2019.008.001.460
  • Moko, E. M., & Rahardiyan, D. (2020). Structure of stigmasterols in bran of red rice from Minahasa Regency, North Sulawesi, Indonesia. Fullerene Journal of Chemistry, 5(1), 16–22. https://doi.org/10.37033/fjc.v5i1.145
  • Oyedemi, S. O., Oyedemi, B. O., Ijeh, I. I., Ohanyerem, P. E., Coopoosamy, R. M., & Aiyegoro, O. A. (2017). Alpha-amylase inhibition and antioxidative capacity of some antidiabetic plants used by the traditional healers in Southeastern Nigeria. The Scientific World Journal, 2017, 3592491. https://doi.org/10.1155/2017/3592491
  • Pan, X., Ma, X., Jiang, Y., Wen, J., Yang, L., Chen, D., Cao, X., & Peng, A. (2020). Comprehensive review of natural products against liver fibrosis: Flavonoids, quinones, lignans, phenols, and acids. Evidence-Based Complementary and Alternative Medicine, 2020, 7171498. https://doi.org/10.1155/2020/7171498
  • Prastiwi, R., Elya, B., Hanafi, M., Desmiaty, Y., & Sauriasari, R. (2020). The Antioxidant Activity of Sterculia stipulata Korth Woods and Leaves by FRAP Method. Pharmacognosy Journal, 12(2), 236–239. https://doi.org/10.5530/pj.2020.12.36
  • Purwanto, E., Hidayati, W., & Nandariyah. (2018). The yield and quality of black rice cultivars in different altitude. IOP Conference Series: Earth and Environmental Science, 142, 012037. https://doi.org/10.1088/1755-1315/142/1/012037
  • Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., & Dhama, K. (2014). Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Research International, 2014, 761264. https://doi.org/10.1155/2014/761264
  • Safitri, A., Fatchiyah, F., Sari, D. R. T., & Roosdiana, A. (2020). Phytochemical Phytochemical screening, in vitro anti-oxidant activity, and in silico anti-diabetic activity of aqueous extracts of Ruellia tuberosa L. Journal Applied Pharmaceutical Science, 10(03), 101–108. https://doi.org/10.7324/JAPS.2020.103013
  • Saha, S., Singh, J., Paul, A., Sarkar, R., Khan, Z., & Banerjee, K. (2021). Anthocyanin profiling using UV-vis spectroscopy and liquid chromatography mass spectrometry. Journal of AOAC International, 103(1), 23–39. https://doi.org/10.5740/jaoacint.19-0201
  • Samyor, D., Das, A. B., & Deka, S. C. (2017). Pigmented rice a potential source of bioactive compounds: A review. International Journal Food Science, 52(5), 1073–1081. https://doi.org/10.1111/ijfs.13378
  • Sari, D. R. T., Cairns, J. R. K., Safitri, A., & Fatchiyah, F. (2019). Virtual prediction of the delphinidin-3-O-glucoside and peonidin-3-O-glucoside as anti-inflammatory of TNF-α signaling. Acta Informatica Medica, 27(3), 152–157. https://doi.org/10.5455/aim.2019.27.152-157
  • Sari, D. R. T., Paemanee, A., Roytrakul, S., Cairns, J. R. K., Safitri, A., & Fatchiyah, F. (2021). Black rice cultivar from Java Island of Indonesia revealed genomic, proteomic, and anthocyanin nutritional value. Acta Biochimica Polonica, 68(1), 55–63. https://doi.org/10.18388/abp.2020_5386
  • Sari, D. R. T., Safitri, A., Cairns, J. R. K., & Fatchiyah, F. (2020). Anti-apoptotic activity of anthocyanins has potential to inhibit caspase-3 signaling. Journal Tropical Life Science, 10(1), 15–25. https://doi.org/10.11594/jtls.10.01.03
  • Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047
  • Shaikh, J. R., & Patil, M. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2), 603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
  • Sholikhah, U., Parjanto, Handoyo, T., & Yunus, A. (2019). Genetic diversity of black and aromatic rice cultivar (Oryza sativa L.) from various regions in Indonesia using random amplified polymorphic DNA markers (RAPD). International Journal on Advanced Science, Engineering and Information Technology, 9(3), 1046–1051. https://doi.org/10.18517/ijaseit.9.3.8382
  • Stintzing, F. C., Stintzing, A. S., Carle, R., Frei, B., & Wrolstad, R. E. (2002). Color and antioxidant properties of cyanidin-based anthocyanin pigments. Journal of Agricultural and Food Chemistry, 50(21), 6172–6181. https://doi.org/10.1021/jf0204811
  • Swallah, M. S., Sun, H., Affoh, R., Fu, H., & Yu, H. (2020). Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. International Journal of Food Science, 2020, 9081686. https://doi.org/10.1155/2020/9081686
  • Tananuwong, K., & Tewaruth, W. (2010). Extraction and application of antioxidants from black glutinous rice. LWT - Food Science and Technology, 43(3), 476–481. https://doi.org/10.1016/j.lwt.2009.09.014
  • Wang, W., Li, Y., Dang, P., Zhao, S., Lai, D., & Zhou, L. (2018). Rice secondary metabolites: Structures, roles, biosynthesis, and metabolic regulation. Molecules, 23(12), 3098. https://doi.org/10.3390/molecules23123098
  • Wu, H., Johnson, M. C., Lu, C. H., Fritsche, K. L., Thomas, A. L., Cai, Z., & Greenlief, C. M. (2015). Determination of anthocyanins and total polyphenols in a cultivar of elderberry juices by UPLC-MS/MS and other methods. Acta horticulturae, 1061(1061), 43–51. https://doi.org/10.17660/actahortic.2015.1061.3
  • Xiao, J. (2017). Dietary flavonoid aglycones and their glycosides: Which show better biological significance?. Critical Reviews in Food Science and Nutrition, 57(9), 1874–1905. https://doi.org/10.1080/10408398.2015.1032400
  • Xiao, J., Capanoglu, E., Jassbi, A. R., & Miron, A. (2016). Advance on the flavonoid C-glycosides and health benefits. Critical Reviews in Food Science and Nutrition, 56(Suppl 1), S29–45. https://doi.org/10.1080/10408398.2015.1067595