726
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sulforaphane attenuates platelet granule secretion through down-regulating glycoprotein VI-mediated p38 MAPK/cPLA2 signaling pathway

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 189-197 | Received 18 Jul 2022, Accepted 31 Dec 2022, Published online: 23 Feb 2023

References

  • Alumkal, J. J., Slottke, R., Schwartzman, J., Cherala, G., Munar, M., Graff, J. N., Beer, T. M., Ryan, C. W., Koop, D. R., Gibbs, A., Gao, L., Flamiatos, J. F., Tucker, E., Kleinschmidt, R., & Mori, M. (2015). A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investigational New Drugs, 33(2), 480–489. https://doi.org/10.1007/s10637-014-0189-z
  • Azorsa, D. O., Hyman, J. A., & Hildreth, J. E. (1991). CD63/Pltgp40: A platelet activation antigen identical to the stage-specific, melanoma-associated antigen ME491. Blood, 78(2), 280–284. https://doi.org/10.1182/blood.V78.2.280.280
  • Bai, Y., Wang, X., Zhao, S., Ma, C., Cui, J., & Zheng, Y. (2015). Sulforaphane protects against cardiovascular disease via Nrf2 Activation. Oxidative Medicine and Cellular Longevity, 2015, 407580. https://doi.org/10.1155/2015/407580
  • Bakogiannis, C., Sachse, M., Stamatelopoulos, K., & Stellos, K. (2019). Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine, 122, 154–157. https://doi.org/10.1016/j.cyto.2017.09.013
  • Blair, P., & Flaumenhaft, R. (2009). Platelet α-granules: Basic biology and clinical correlates. Blood reviews, 23(4), 177–189. https://doi.org/10.1016/j.blre.2009.04.001
  • Briones-Herrera, A., Eugenio-Perez, D., Reyes-Ocampo, J. G., Rivera-Mancia, S., & Pedraza-Chaverri, J. (2018). New highlights on the health-improving effects of sulforaphane. Food & Function, 9(5), 2589–2606. https://doi.org/10.1039/C8FO00018B
  • Burger, P. C., & Wagner, D. D. (2003). Platelet P-selectin facilitates atherosclerotic lesion development. Blood, 101(7), 2661–2666. https://doi.org/10.1182/blood-2002-07-2209
  • Chuang, W. Y., Kung, P. H., Kuo, C. Y., & Wu, C. C. (2013). Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/akt pathway. Thrombosis and Haemostasis, 109(6), 1120–1130. https://doi.org/10.1160/TH12-09-0636
  • Conaway, C. C., Getahun, S. M., Liebes, L. L., Pusateri, D. J., Topham, D. K., Botero-Omary, M., & Chung, F. L. (2000). Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutrition and Cancer, 38(2), 168–178. https://doi.org/10.1207/S15327914NC382_5
  • Elkashty, O. A., & Tran, S. D. (2021). Sulforaphane as a promising natural molecule for cancer prevention and treatment. Current Medical Science, 41(2), 250–269. https://doi.org/10.1007/s11596-021-2341-2
  • Estevez, B., Shen, B., & Du, X. (2015). Targeting integrin and integrin signaling in treating thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(1), 24–29. https://doi.org/10.1161/ATVBAHA.114.303411
  • Eun, S. S., Fei, X., Yoon, J. H., Seo, S. Y., Maeng, H. J., Jeong, S. H., & Kim, Y. C. (2021). Comparison of pharmacokinetics and anti-pulmonary fibrosis-related effects of sulforaphane and sulforaphane N-acetylcysteine. Pharmaceutics, 13(7), 958. https://doi.org/10.3390/pharmaceutics13070958
  • Fontana, P., Zufferey, A., Daali, Y., & Reny, J. L. (2014). Antiplatelet therapy: Targeting the TxA2 pathway. Journal of Cardiovascular Translational Research, 7(1), 29–38. https://doi.org/10.1007/s12265-013-9529-1
  • Fuentes, E., Badimon, L., Caballero, J., Padro, T., Vilahur, G., Alarcon, M., Perez, P., & Palomo, I. (2014). Protective mechanisms of adenosine 5′-monophosphate in platelet activation and thrombus formation. Thrombosis and Haemostasis, 111(3), 491–507. https://doi.org/10.1160/TH13-05-0386
  • Gasper, A. V., Al-Janobi, A., Smith, J. A., Bacon, J. R., Fortun, P., Atherton, C., Taylor, M. A., Hawkey, C. J., Barrett, D. A., & Mithen, R. F. (2005). Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. The American Journal of Clinical Nutrition, 82(6), 1283–1291. https://doi.org/10.1093/ajcn/82.6.1283
  • Gawaz, M., Langer, H., & May, A. E. (2005). Platelets in inflammation and atherogenesis. The Journal of Clinical Investigation, 115(12), 3378–3384. https://doi.org/10.1172/JCI27196
  • Ghasemzadeh, M., & Hosseini, E. (2017). Platelet granule release is associated with reactive oxygen species generation during platelet storage: A direct link between platelet pro-inflammatory and oxidation states. Thrombosis Research, 156, 101–104. https://doi.org/10.1016/j.thromres.2017.06.016
  • Gillespie, S., Holloway, P. M., Becker, F., Rauzi, F., Vital, S. A., Taylor, K. A., Stokes, K. Y., Emerson, M., & Gavins, F. N. E. (2018). The isothiocyanate sulforaphane modulates platelet function and protects against cerebral thrombotic dysfunction. British Journal of Pharmacology, 175(16), 3333–3346. https://doi.org/10.1111/bph.14368
  • Jayakumar, T., Chen, W. F., Lu, W. J., Chou, D. S., Hsiao, G., Hsu, C. Y., Sheu, J. R., & Hsieh, C. Y. (2013). A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase: Ex vivo and in vivo studies. The Journal of Nutritional Biochemistry, 24(6), 1086–1095. https://doi.org/10.1016/j.jnutbio.2012.08.007
  • Joshi, S., Banerjee, M., Zhang, J., Kesaraju, A., Pokrovskaya, I. D., Storrie, B., & Whiteheart, S. W. (2018). Alterations in platelet secretion differentially affect thrombosis and hemostasis. Blood Advances, 2(17), 2187–2198. https://doi.org/10.1182/bloodadvances.2018019166
  • Leong, D. P., Joseph, P. G., McKee, M., Anand, S. S., Teo, K. K., Schwalm, J. D., & Yusuf, S. (2017). Reducing the global burden of cardiovascular disease, part 2: Prevention and treatment of cardiovascular disease. Circulation Research, 121(6), 695–710. https://doi.org/10.1161/CIRCRESAHA.117.311849
  • Li, W., Ma, Y., Zhang, C., Chen, B., Zhang, X., Yu, X., Shuai, H., He, Q., & Ya, F. (2022). Tetrahydrocurcumin downregulates MAPKs/cPLA2 signaling and attenuates platelet thromboxane A2 generation, granule secretion, and thrombus growth. Thrombosis and Haemostasis, 122(5), 739–754. https://doi.org/10.1055/s-0041-1735192
  • Liu, H., & Talalay, P. (2013). Relevance of anti-inflammatory and antioxidant activities of exemestane and synergism with sulforaphane for disease prevention. Proceedings of the National Academy of Sciences, 110(47), 19065–19070. https://doi.org/10.1073/pnas.1318247110
  • Li, Z., Zhang, G., Le Breton, G. C., Gao, X., Malik, A. B., & Du, X. (2003). Two waves of platelet secretion induced by thromboxane A2 receptor and a critical role for phosphoinositide 3-kinases. The Journal of Biological Chemistry, 278(33), 30725–30731. https://doi.org/10.1074/jbc.M301838200
  • Lucotti, S., Cerutti, C., Soyer, M., Gil-Bernabe, A. M., Gomes, A. L., Allen, P. D., Smart, S., Markelc, B., Watson, K., Armstrong, P. C., Mitchell, J. A., Warner, T. D., Ridley, A. J., & Muschel, R. J. (2019). Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. The Journal of Clinical Investigation, 129(5), 1845–1862. https://doi.org/10.1172/JCI121985
  • Martinez-Gonzalez, M. A., Gea, A., & Ruiz-Canela, M. (2019). The Mediterranean diet and cardiovascular health. Circulation Research, 124(5), 779–798. https://doi.org/10.1161/CIRCRESAHA.118.313348
  • Moroi, A. J., & Watson, S. P. (2015). Impact of the PI3-kinase/akt pathway on ITAM and hemITAM receptors: Haemostasis, platelet activation and antithrombotic therapy. Biochemical Pharmacology, 94(3), 186–194. https://doi.org/10.1016/j.bcp.2015.02.004
  • Mozaffarian, D. (2016). Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation, 133(2), 187–225. https://doi.org/10.1161/CIRCULATIONAHA.115.018585
  • Naik, M. U., Patel, P., Derstine, R., Turaga, R., Chen, X., Golla, K., Neeves, K. B., Ichijo, H., & Naik, U. P. (2017). Ask1 regulates murine platelet granule secretion, thromboxane A2 generation, and thrombus formation. Blood, 129(9), 1197–1209. https://doi.org/10.1182/blood-2016-07-729780
  • Palabrica, T., Lobb, R., Furie, B. C., Aronovitz, M., Benjamin, C., Hsu, Y. M., Sajer, S. A., & Furie, B. (1992). Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature, 359(6398), 848–851. https://doi.org/10.1038/359848a0
  • Patel, P., & Naik, U. P. (2020). Platelet MAPKs—a 20+ year history: What do we really know? Journal of Thrombosis and Haemostasis, 18(9), 2087–2102. https://doi.org/10.1111/jth.14967
  • Perrella, G., Nagy, M., Watson, S. P., & Heemskerk, J. W. M. (2021). Platelet GPVI (glycoprotein VI) and thrombotic complications in the venous system. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(11), 2681–2692. https://doi.org/10.1161/ATVBAHA.121.316108
  • Qi, Z., Hu, L., Zhang, J., Yang, W., Liu, X., Jia, D., Yao, Z., Chang, L., Pan, G., Zhong, H., Luo, X., Yao, K., Sun, A., Qian, J., Ding, Z., & Ge, J. (2021). PCSK9 (proprotein convertase subtilisin/kexin 9) enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36. Circulation, 143(1), 45–61. https://doi.org/10.1161/CIRCULATIONAHA.120.046290
  • Rayes, J., Watson, S. P., & Nieswandt, B. (2019). Functional significance of the platelet immune receptors GPVI and CLEC-2. The Journal of Clinical Investigation, 129(1), 12–23. https://doi.org/10.1172/JCI122955
  • Russo, M., Spagnuolo, C., Russo, G. L., Skalicka-Wozniak, K., Daglia, M., Sobarzo-Sanchez, E., Nabavi, S. F., & Nabavi, S. M. (2018). Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Critical Reviews in Food Science and Nutrition, 58(8), 1391–1405. https://doi.org/10.1080/10408398.2016.1259983
  • Scarlett, G., Paul, M. H., Felix, B., Francesca, R., Shantel, A. V., Kirk, A. T., Karen, Y. S., Michael, E., & Felicity, N. G. (2018). The isothiocyanate sulforaphane modulates platelet function and protects against cerebral thrombotic dysfunction. British Journal of Pharmacology, 175(16), 3333–3346. https://doi.org/10.1111/bph.14368
  • Vanduchova, A., Anzenbacher, P., & Anzenbacherova, E. (2019). Isothiocyanate from broccoli, sulforaphane, and its properties. Journal of Medicinal Food, 22(2), 121–126. https://doi.org/10.1089/jmf.2018.0024
  • Violi, F., & Pignatelli, P. (2012). Platelet oxidative stress and thrombosis. Thrombosis Research, 129(3), 378–381. https://doi.org/10.1016/j.thromres.2011.12.002
  • Wang, Y., Gallant, R. C., & Ni, H. (2016). Extracellular matrix proteins in the regulation of thrombus formation. Current Opinion in Hematology, 23(3), 280–287. https://doi.org/10.1097/MOH.0000000000000237
  • Xu, X. R., Zhang, D., Oswald, B. E., Carrim, N., Wang, X., Hou, Y., Zhang, Q., Lavalle, C., McKeown, T., Marshall, A. H., & Ni, H. (2016). Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Critical Reviews in Clinical Laboratory Sciences, 53(6), 409–430. https://doi.org/10.1080/10408363.2016.1200008
  • Ya, F., Li, K., Chen, H., Tian, Z., Fan, D., Shi, Y., Song, F., Xu, X., Ling, W., Adili, R., & Yang, Y. (2021). Protocatechuic acid protects platelets from apoptosis via inhibiting oxidative stress-mediated PI3K/Akt/GSK3β signaling. Thrombosis and Haemostasis, 121(7), 931–943. https://doi.org/10.1055/s-0040-1722621
  • Ya, F., Tian, J., Li, Q., Chen, L., Ren, J., Zhao, Y., Wan, J., Ling, W., & Yang, Y. (2018). Cyanidin-3-O-β-glucoside, a natural polyphenol, exerts proapoptotic effects on activated platelets and enhances megakaryocytic proplatelet formation. Journal of Agricultural and Food Chemistry, 66(41), 10712–10720. https://doi.org/10.1021/acs.jafc.8b03266
  • Ya, F., Xu, X. R., Shi, Y., Gallant, R. C., Song, F., Zuo, X., Zhao, Y., Tian, Z., Zhang, C., Xu, X., Ling, W., Ni, H., & Yang, Y. (2019). Coenzyme Q10 upregulates platelet cAMP/PKA pathway and attenuates integrin αiibβ3 signaling and thrombus growth. Molecular Nutrition & Food Research, 63(23), e1900662. https://doi.org/10.1002/mnfr.201900662
  • Ya, F., Xu, X. R., Tian, Z., Gallant, R. C., Song, F., Shi, Y., Wu, Y., Wan, J., Zhao, Y., Adili, R., Ling, W., Ni, H., & Yang, Y. (2020). Coenzyme Q10 attenuates platelet integrin αIIbβ3 signaling and platelet hyper-reactivity in ApoE-deficient mice. Food & Function, 11(1), 139–152. https://doi.org/10.1039/C9FO01686D