2,044
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The microbial composition and functional roles of different kombucha products in Singapore

, , , , , & show all
Pages 269-274 | Received 14 Nov 2022, Accepted 10 Mar 2023, Published online: 28 Mar 2023

References

  • Antolak, H., Piechota, D., & Kucharska, A. (2021). Kombucha tea—A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants (Basel), 10(10), 1541. https://doi.org/10.3390/antiox10101541
  • Arikan, M., Mitchell, A. L., Finn, R. D., & Gurel, F. (2020). Microbial composition of kombucha determined using amplicon sequencing and shotgun metagenomics. Journal of Food Science, 85(2), 455–464. https://doi.org/10.1111/1750-3841.14992
  • Bishop, P., Pitts, E. R., Budner, D., & Thompson-Witrick, K. A. (2022). Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chemistry Advances, 1, 100025. https://doi.org/10.1016/j.focha.2022.100025
  • Cao, J., Yu, Z., Liu, W., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. Journal of Functional Foods, 64, 103643. https://doi.org/10.1016/j.jff.2019.103643
  • de Miranda, J. F., Ruiz, L. F., Silva, C. B., Uekane, T. M., Silva, K. A., Gonzalez, A. G. M., Fernandes, F. F., & Lima, A. R. (2022). Kombucha: A review of substrates, regulations, composition, and biological properties. Journal of Food Science, 87(2), 503–527. https://doi.org/10.1111/1750-3841.16029
  • Gu, Z., Eils, R., & Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics (Oxford, England), 32(18), 2847–2849. https://doi.org/10.1093/bioinformatics/btw313
  • Harrison, K., & Curtin, C. (2021). Microbial composition of SCOBY starter cultures used by commercial kombucha brewers in North America. Microorganisms, 9(5), 1060. https://doi.org/10.3390/microorganisms9051060
  • Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13, 538–550. https://doi.org/10.1111/1541-4337.12073
  • Kaashyap, M., Cohen, M., & Mantri, N. (2021). Microbial diversity and characteristics of kombucha as revealed by metagenomic and physicochemical analysis. Nutrients, 13(12), 4446. https://doi.org/10.3390/nu13124446
  • Lavasani, P. S., Motevaseli, E., Sanikhani, N. S., & Modarressi, M. H. (2019). Komagataeibacter xylinus as a novel probiotic candidate with high glucose conversion rate properties. Heliyon, 5, e01571. https://doi.org/10.1016/j.heliyon.2019.e01571
  • McIver, L. J., Abu-Ali, G., Franzosa, E. A., Schwager, R., Morgan, X. C., Waldron, L., Segata, N., & Huttenhower, C. (2018). BioBakery: A meta’omic analysis environment. Bioinformatics, 34(7), 1235–1237. https://doi.org/10.1093/bioinformatics/btx754
  • McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PloS One, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217
  • Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8), 1255. https://doi.org/10.3390/molecules22081255
  • Nguyen, N. K., Dong, N. T., Nguyen, H. T., & Le, P. H. (2015). Lactic acid bacteria: Promising supplements for enhancing the biological activities of kombucha. Springerplus, 4, 91. https://doi.org/10.1186/s40064-015-0872-3
  • PubChem. Fatty acid oxidation. Retrieved May 25, 2022, from https://pubchem.ncbi.nlm.nih.gov/pathway/PathBank:SMP0000781
  • Qiu, X., Zhang, Y., & Hong, H. (2021). Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express, 11(1). https://doi.org/10.1186/s13568-021-01189-6
  • Schönfeld, P., & Wojtczak, L. (2016). Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research, 57(6), 943–954. https://doi.org/10.1194/jlr.R067629
  • Su, F., & Xu, P. (2014). Genomic analysis of thermophilic bacillus coagulans strains: Efficient producers for platform bio-chemicals. Scientific Reports, 4(1), 3926. https://doi.org/10.1038/srep03926
  • Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology, 91–119. https://doi.org/10.1016/b978-0-12-800100-4.00003-9
  • Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J.-P., & Taillandier, P. (2018). Understanding kombucha tea fermentation: A review. Journal of Food Science, 83(3), 580–588. https://doi.org/10.1111/1750-3841.14068
  • Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.612285
  • Wickham, H. ggplot2: Elegant graphics for data analysis. Retrieved March 10, 2022, from https://ggplot2.tidyverse.org
  • Yang, J., Lagishetty, V., Kurnia, P., Henning, S. M., Ahdoot, A. I., & Jacobs, J. P. (2022). Microbial and chemical profiles of commercial kombucha products. Nutrients, 14, 670. https://doi.org/10.3390/nu14030670
  • Zhao, Z., Sui, Y., Wu, H., Zhou, C., Hu, X., & Zhang, J. (2018). Flavour chemical dynamics during fermentation of kombucha tea. Emirates Journal of Food and Agriculture, 30, 732–741. https://doi.org/10.9755/ejfa.2018.v30.i9.1794