1,343
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Antiapoptotic and anticoagulant effects of camel milk and camel urine in methotrexate-induced hepatotoxicity

Pages 357-365 | Received 08 Nov 2022, Accepted 11 Apr 2023, Published online: 27 Apr 2023

References

  • Abd Al-Azem, D., Al Derawi, K. H., & Al-Saadi, S. A. M. (2019). The protective effects of syzygium aromaticum essential oil extract against methotrexate induced hepatic and renal toxicity in rats. Journal of Pure and Applied Microbiology, 13(1), 505–516. https://doi.org/10.22207/JPAM.13.1.57
  • Abdalla, K. O. (2018). Camel milk is an alternative and a complementary treatment to the current parenteral insulin therapy of insulin-dependent diabetes mellitus. Gezira Journal of Health Sciences, 12(2).
  • Abuelgasim, K. A., Alsharhan, Y., Alenzi, T., Alhazzani, A., Ali, Y. Z., & Jazieh, A. R. (2018). The use of complementary and alternative medicine by patients with cancer: A cross-sectional survey in Saudi Arabia. BMC Complementary and Alternative Medicine, 18(1), 1–8. https://doi.org/10.1186/s12906-018-2150-8
  • Agrawal, R. P., Jain, S., Shah, S., Chopra, A., & Agarwal, V. (2011). Effect of camel milk on glycemic control and insulin requirement in patients with type 1 diabetes: 2-years randomized controlled trial. European Journal of Clinical Nutrition, 65(9), 1048–1052. https://doi.org/10.1038/ejcn.2011.98
  • Ahamad, S. R., Alhaider, A. Q., Raish, M., & Shakeel, F. (2017). Metabolomic and elemental analysis of camel and bovine urine by GC–MS and ICP–MS. Saudi Journal of Biological Sciences, 24(1), 23–29. https://doi.org/10.1016/j.sjbs.2015.09.001
  • Al-Ghumlas, A. K. (2020). Camel platelet aggregation responses and the antiplatelet effect of camel urine: Comparison between black and white camels. Heliyon, 6(10), e05353. https://doi.org/10.1016/j.heliyon.2020.e05353
  • Alhaider, A., Abdelgader, A. G., Turjoman, A. A., Newell, K., Hunsucker, S. W., Shan, B., Ma, B., Gibson, D. S., & Duncan, M. W. (2013). Through the eye of an electrospray needle: Mass spectrometric identification of the major peptides and proteins in the milk of the one‐humped camel (Camelus dromedarius). Journal of Mass Spectrometry, 48(7), 779–794. https://doi.org/10.1002/jms.3213
  • Al-Humaid, A. I., Mousa, H. M., El-Mergawi, R. A., & Abdel-Salam, A. M. (2010). Chemical composition and antioxidant activity of dates and dates-camel-milk mixtures as a protective meal against lipid peroxidation in rats. American Journal of Food Technology, 5(1), 22–30. https://doi.org/10.3923/ajft.2010.22.30
  • Alkhamees, O. A., & Alsanad, S. M. (2017). A review of the therapeutic characteristics of camel urine. African Journal of Traditional, Complementary and Alternative Medicines, 14(6), 120–126. https://doi.org/10.21010/ajtcam.v14i6.12
  • AlNafea, H. M., & Korish, A. A. (2021). Activation of the peroxisome proliferator-activated receptors (PPAR-α/γ) and the fatty acid metabolizing enzyme protein CPT1A by camel milk treatment counteracts the high-fat diet-induced nonalcoholic fatty liver disease. PPAR Research, 2021(9), 2021. https://doi.org/10.1155/2021/5558731
  • Antoine, D. J., Jenkins, R. E., Dear, J. W., Williams, D. P., McGill, M. R., Sharpe, M. R., Craig, D. G., Simpson, K. J., Jaeschke, H., & Park, B. K. (2020). Retraction notice to “molecular forms of HMGB1 and keratin-18 as mechanistic biomarkers for mode of cell death and prognosis during clinical acetaminophen hepatotoxicity”: J Hepatol 56 (2012) 1070–1079. Journal of Hepatology, 73(5), 1297. https://doi.org/10.1016/j.jhep.2020.08.022
  • Anwar, S., Ansari, S. A., Alamri, A., Alamri, A., Alqarni, A., Alghamdi, S., Wagih, M. E., Ahmad, A., & Rengasamy, K. R. (2021). Clastogenic, anti-clastogenic profile and safety assessment of camel urine towards the development of new drug target. Food and Chemical Toxicology, 151, 112131. https://doi.org/10.1016/j.fct.2021.112131
  • Arab, H. H., Eid, A. H., Gad, A. M., Yahia, R., Mahmoud, A. M., & Kabel, A. M. (2021). Inhibition of oxidative stress and apoptosis by camel milk mitigates cyclosporine‐induced nephrotoxicity: Targeting Nrf2/HO‐1 and AKT/eNOS/NO pathways. Food Science & Nutrition, 9(6), 3177–3190. https://doi.org/10.1002/fsn3.2277
  • Ashraf, A., Mudgil, P., Palakkott, A., Iratni, R., Gan, C. Y., Maqsood, S., & Ayoub, M. A. (2021). Molecular basis of the anti-diabetic properties of camel milk through profiling of its bioactive peptides on dipeptidyl peptidase IV (DPP-IV) and insulin receptor activity. Journal of Dairy Science, 104(1), 61–77. https://doi.org/10.3168/jds.2020-18627
  • Atkinson, S. R., Grove, J. I., Liebig, S., Astbury, S., Vergis, N., Goldin, R., Quaglia, A., Bantel, H., Guha, I. N., Thursz, M. R., & Newcombe, P. (2020). In severe alcoholic hepatitis, serum keratin-18 fragments are diagnostic, prognostic, and theragnostic biomarkers. Official Journal of the American College of Gastroenterology, 115(11), 1857–1868. https://doi.org/10.14309/ajg.0000000000000912
  • Awad, M., Elsawy, S., Abdalfattah, A., & Nassar, A. (2018). The effect of taurine on methotrexate induced hepatorenal toxicity in rats. International Journal of Advanced Research, 6(2), 1778–1791. https://doi.org/10.21474/IJAR01/6618
  • Ayyash, M., Al-Nuaimi, A. K., Al-Mahadin, S., & Liu, S. Q. (2018). In vitro investigation of anticancer and ACE-inhibiting activity, α-amylase and α-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. Food Chemistry, 239, 588–597. https://doi.org/10.1016/j.foodchem.2017.06.149
  • Chakravarty, K., McDonald, H., Pullar, T., Taggart, A., Chalmers, R., Oliver, S., Mooney, J., Somerville, M., Bosworth, A., & Kennedy, T. (2008). BSR/BHPR guideline for disease-modifying anti-rheumatic drug (DMARD) therapy in consultation with the British Association of Dermatologists. Rheumatology, 47(6), 924–925. https://doi.org/10.1093/rheumatology/kel216a
  • Conway, R., & Carey, J. J. (2017). Risk of liver disease in methotrexate treated patients. World Journal of Hepatology, 9(26), 1092. https://doi.org/10.4254/wjh.v9.i26.1092
  • Dar, A. A., Fehaid, A., Alkhatani, S., Alarifi, S., Alqahtani, W. S., Albasher, G., Almeer, R., Alfarraj, S., & Moneim, A. A. (2021). The protective role of luteolin against the methotrexate-induced hepato-renal toxicity via its antioxidative, anti-inflammatory, and anti-apoptotic effects in rats. Human & Experimental Toxicology, 40(7), 1194–1207.
  • Ehlayel, M. S., Hazeima, K. A., Al-Mesaifri, F., & Bener, A. (2011). Camel milk: An alternative for cow’s milk allergy in children. Allergy and Asthma Proceedings, 32(3), 255. https://doi.org/10.2500/aap.2011.32.3429
  • Elagamy, E. I. (2000). Effect of heat treatment on camel milk proteins with respect to antimicrobial factors: A comparison with cows’ and buffalo milk proteins. Food Chemistry, 68(2), 227–232. https://doi.org/10.1016/S0308-8146(99)00199-5
  • El-Fakharany, E. M., El-Baky, N. A., Linjawi, M. H., Aljaddawi, A. A., Saleem, T. H., Nassar, A. Y., Osman, A., & Redwan, E. M. (2017). Influence of camel milk on the hepatitis C virus burden of infected patients. Experimental and Therapeutic Medicine, 13(4), 1313–1320. https://doi.org/10.3892/etm.2017.4159
  • Elhag, A. E., Faye, B., & El Badwi, S. (2017). Protective activity of camel’s milk and urine mixture (Camelus dromedarius) against ethanol-induced hepatotoxicity in rats. Advances in Bioscience and Biotechnology, 8(10), 378–387. https://doi.org/10.4236/abb.2017.810027
  • Elhag, A. E., & Mustafa, A. (2016). Hepatoprotective effect of urine of one-humped camel (Camelus dromedarius) against ethanol induced liver damage in rats. International Journal of Pharmaceutical Chemistry, 5, 1–8.
  • Fabbrini, E., Serafini, M., Colic Baric, I., Hazen, S. L., & Klein, S. (2014). Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes, 63(3), 976–981. https://doi.org/10.2337/db13-1396
  • Fisgin, T., Yarali, N., Kara, A., Bozkurt, C., Birgen, D., Erten, U., & Duru, F. (2004). Hemostatic side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Pediatric Hematology and Oncology, 21(1), 77–83. https://doi.org/10.1080/pho.21.1.77.83
  • Gader, A. G. M. A., & Alhaider, A. A. (2016). The unique medicinal properties of camel products: A review of the scientific evidence. Journal of Taibah University Medical Sciences, 11(2), 98–103. https://doi.org/10.1016/j.jtumed.2015.12.007
  • Giovannini, I., Chiarla, C., Giuliante, F., Pallavicini, F., Vellone, M., Ardito, F., & Nuzzo, G. (2006). Serum uric acid, creatinine, and the assessment of antioxidant capacity in critical illness. Critical Care, 10(5), 1–2. https://doi.org/10.1186/cc5008
  • Hassan, A. A. M., Ismail, M. F., & Mohamed, H. M. (2015). Effect of methotrexate combined with ginger, silymarin or propolis on the mRNA expression levels of cytochrome P450 oxidoreductase (POR), caspase 3 (CASP-3) and interlukin 6 (IL-6). African Journal of Biotechnology, 14(8), 695–701. https://doi.org/10.5897/AJB2014.14196
  • Herman, S., Zurgil, N., & Deutsch, M. (2005). Low dose methotrexate induces apoptosis with reactive oxygen species involvement in T lymphocytic cell lines to a greater extent than in monocytic lines. Inflammation Research, 54(7), 273–280. https://doi.org/10.1007/s00011-005-1355-8
  • Hu, Z., Chang, X., Pan, Q., Gu, K., & Okechukwu, P. N. (2017). Gastroprotective and ulcer healing effects of camel milk and urine in HCl/EtOH, non-steroidal anti-inflammatory drugs (indomethacin), and water-restraint stress-induced ulcer in rats. Pharmacognosy Magazine, 13(52), 559. https://doi.org/10.4103/pm.pm_135_17
  • Ibrahim, H. R., Isono, H., & Miyata, T. (2018). Potential antioxidant bioactive peptides from camel milk proteins. Animal Nutrition, 4(3), 273–280. https://doi.org/10.1016/j.aninu.2018.05.004
  • Ibrahim, H. M., Mohammed-Geba, K., Tawfic, A. A., & El-Magd, M. A. (2019). Camel milk exosomes modulate cyclophosphamide-induced oxidative stress and immuno-toxicity in rats. Food & Function, 10(11), 7523–7532. https://doi.org/10.1039/C9FO01914F
  • Jaeschke, H., Duan, L., Akakpo, J. Y., Farhood, A., & Ramachandran, A. (2018). The role of apoptosis in acetaminophen hepatotoxicity. Food and Chemical Toxicology, 118, 709–718. https://doi.org/10.1016/j.fct.2018.06.025
  • Jaeschke, H., Ramachandran, A., Chao, X., & Ding, W. X. (2019). Emerging and established modes of cell death during acetaminophen-induced liver injury. Archives of Toxicology, 93(12), 3491–3502. https://doi.org/10.1007/s00204-019-02597-1
  • Joka, D., Wahl, K., Moeller, S., Schlue, J., Vaske, B., Bahr, M. J., Manns, M. P., Schulze‐Osthoff, K., & Bantel, H. (2012). Prospective biopsy‐controlled evaluation of cell death biomarkers for prediction of liver fibrosis and nonalcoholic steatohepatitis. Hepatology, 55(2), 455–464. https://doi.org/10.1002/hep.24734
  • Korish, A. A. (2014). The antidiabetic action of camel milk in experimental type 2 diabetes mellitus: An overview on the changes in incretin hormones, insulin resistance, and inflammatory cytokines. Hormone and Metabolic Research, 46(06), 404–411. https://doi.org/10.1055/s-0034-1368711
  • Korish, A. A., & Arafah, M. M. (2013). Camel milk ameliorates steatohepatitis, insulin resistance and lipid peroxidation in experimental non-alcoholic fatty liver disease. BMC Complementary and Alternative Medicine, 13(1), 1–12. https://doi.org/10.1186/1472-6882-13-264
  • A. A., Gader, A. G. M. A., & Alhaider, A. A. (2020). Comparison of the hypoglycemic and antithrombotic (anticoagulant) actions of whole bovine and camel milk in streptozotocin-induced diabetes mellitus in rats. Journal of Dairy Science, 103(1), 30–41.
  • Korver, S., Bowen, J., Pearson, K., Gonzalez, R. J., French, N., Park, K., Jenkins, R., & Goldring, C. (2021). The application of cytokeratin-18 as a biomarker for drug-induced liver injury. Archives of Toxicology, 95(11), 3435–3448. https://doi.org/10.1007/s00204-021-03121-0
  • Koźmiński, P., Halik, P. K., Chesori, R., & Gniazdowska, E. (2020). Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. International Journal of Molecular Sciences, 21(10), 3483. https://doi.org/10.3390/ijms21103483
  • Mahadeo, K. M., Dhall, G., Panigrahy, A., Lastra, C., & Ettinger, L. J. (2010). Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury. Pediatric Hematology and Oncology, 27(1), 46–52. https://doi.org/10.3109/08880010903341904
  • Mahmoud, H. S., Elsaed, W. M., & Gabr, S. A. (2019). Camel urotherapy and hepatoprotective effects against carbon tetrachloride-induced liver toxicity. International Journal of Pharmacology, 15(6), 696–705. https://doi.org/10.3923/ijp.2019.696.705
  • Mahmoud, H. S., Elsaed, W. M., Khaled, H. E., Ezzat, T. M., & El Menyawi, M. A. I. (2020). Ameliorative effect of camel urotherapy to cisplatin induced urinary tract subacute and chronic toxicity in male albino rats. Biomedical and Pharmacology Journal, 13(3), 1311–1319. https://doi.org/10.13005/bpj/2000
  • Majtnerová, P., & Roušar, T. (2018). An overview of apoptosis assays detecting DNA fragmentation. Molecular Biology Reports, 45(5), 1469–1478. https://doi.org/10.1007/s11033-018-4258-9
  • Malayeri, A., Badparva, R., Mombeini, M. A., Khorsandi, L., & Goudarzi, M. (2022). Naringenin: A potential natural remedy against methotrexate-induced hepatotoxicity in rats. Drug and Chemical Toxicology, 45(2), 491–498.
  • Mehrzadi, S., Mehrabani, M., Malayeri, A. R., Bakhshayesh, M., Kalantari, H., & Goudarzi, M. (2019). Ellagic acid as a potential antioxidant, alleviates methotrexate-induced hepatotoxicity in male rats. Acta chirurgica Belgica, 119(2), 69–77. https://doi.org/10.1080/00015458.2018.1455419
  • Mukherjee, S., Ghosh, S., Choudhury, S., Adhikary, A., Manna, K., Dey, S., Sa, G., Das, T., & Chattopadhyay, S. (2013). Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-κB pathways. The Journal of Nutritional Biochemistry, 24(12), 2040–2050. https://doi.org/10.1016/j.jnutbio.2013.07.005
  • Mustapha, A., Marte, A. M., Makinta, A. A., & Benisheikh, A. A. (2021). Efficacy of camel urine in the management of diabetes mellitus in Alloxan induced Albino Rats. International Journal of Agricultural Science & Technology.
  • Naldi, L., & Griffiths, C. E. M. (2005). Traditional therapies in the management of moderate to severe chronic plaque psoriasis: An assessment of the benefits and risks. The British Journal of Dermatology, 152(4), 597–615. https://doi.org/10.1111/j.1365-2133.2005.06563.x
  • Nauck, M. A., & Meier, J. J. (2018). Incretin hormones: Their role in health and disease. Diabetes, Obesity & Metabolism, 20, 5–21. https://doi.org/10.1111/dom.13129
  • Nongonierma, A. B., Paolella, S., Mudgil, P., Maqsood, S., & FitzGerald, R. J. (2018). Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chemistry, 244, 340–348. https://doi.org/10.1016/j.foodchem.2017.10.033
  • Osman, A., El-Hadary, A., Korish, A. A., AlNafea, H. M., Alhakbany, M. A., Awad, A. A., & Abdel-Hamid, M. (2021). Angiotensin-I converting enzyme inhibition and antioxidant activity of papain-hydrolyzed camel whey protein and its hepato-renal protective effects in thioacetamide-induced toxicity. Foods, 10(2), 468. https://doi.org/10.3390/foods10020468
  • Saka, S., & Aouacheri, O. J. J. B. A. (2017). The investigation of the oxidative stress-related parameters in high doses methotrexate-induced albino wistar rats. Journal of Bioequivalence & Bioavailability, 9(2), 372–376. https://doi.org/10.4172/jbb.1000327
  • Shaban, A. M., Raslan, M., Qahl, S. H., Elsayed, K., Abdelhameed, M. S., Oyouni, A. A., Al-Amer, O. M., Hammouda, O., & El-Magd, M. A. (2022). Ameliorative effects of camel milk and its exosomes on diabetic nephropathy in rats. Membranes, 12(11), 1060. https://doi.org/10.3390/membranes12111060
  • Shoeib, A., & Ba-Hatheq, A. (2007). Effect of camel’surfline on pathogenic Pseudomonas aeruginosa and E. coli isolates towards its maintains to their antibiotic (s) resistance and the presence of plasmid (s). Saudi Journal of Biological Sciences, 14(2), 177–184.
  • Tarnopolsky, M. A. (2011). Creatine as a therapeutic strategy for myopathies. Amino Acids, 40(5), 1397–1407. https://doi.org/10.1007/s00726-011-0876-4
  • Thulin, P., Nordahl, G., Gry, M., Yimer, G., Aklillu, E., Makonnen, E., Aderaye, G., Lindquist, L., Mattsson, C. M., Ekblom, B., & Antoine, D. J. (2014). Keratin‐18 and microRNA‐122 complement alanine aminotransferase as novel safety biomarkers for drug‐induced liver injury in two human cohorts. Liver International, 34(3), 367–378. https://doi.org/10.1111/liv.12322
  • Totan, M., Dagdemir, A., Ak, A. R., Albayrak, D., & Kucukoduk, S. (2001). Effects of high‐dose methotrexate on the hemostatic system in childhood acute lymphoblastic leukemia. Medical and Pediatric Oncology: The Official Journal of SIOP—International Society of Pediatric Oncology Societé Internationale d’Oncologie Pédiatrique, 36(4), 429–443. https://doi.org/10.1002/mpo.1106
  • Vatsalya, V., Cave, M. C., Kong, M., Gobejishvili, L., Falkner, K. C., Craycroft, J., Mitchell, M., Szabo, G., McCullough, A., Dasarathy, S., & Radaeva, S. (2020). Keratin 18 is a diagnostic and prognostic factor for acute alcoholic hepatitis. Clinical Gastroenterology and Hepatology, 18(9), 2046–2054. https://doi.org/10.1016/j.cgh.2019.11.050
  • Wang, Z. X., Qiao, X. Y., Hao, S. N., & Ji, R. (2017). Demonstration of hepatoprotective action of camel milk through improving antioxidant activity and regulating gene expression in mice. Journal of Camel Practice and Research, 24(2), 169–174. https://doi.org/10.5958/2277-8934.2017.00026.1
  • World Health Organization. (1993). Guidelines on the conservation of medicinal plants. International Union for Conservation of Nature and Natural Resources.
  • Xue, X., Wang, W. S., Shi, J. Z., Zhang, S. L., Zhao, W. Q., Shi, W. H., Guo, B. Z., & Qin, Z. (2014). Efficacy of swim-up versus density gradient centrifugation in improving sperm deformity rate and DNA fragmentation index in semen samples from teratozoospermic patients. Journal of Assisted Reproduction and Genetics, 31(9), 1161–1166. https://doi.org/10.1007/s10815-014-0287-z