2,051
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Isolation and identification of pigment-producing filamentous fungus DBFL05 and its pigment characteristics and chemical structure

, , , &
Pages 374-385 | Received 27 Jan 2023, Accepted 22 Apr 2023, Published online: 08 May 2023

References

  • Alberti, F., Foster, G. D., & Bailey, A. M. (2017). Natural products from filamentous fungi and production by heterologous expression. Applied Microbiology and Biotechnology, 101(2), 493–500. https://doi.org/10.1007/s00253-016-8034-2
  • Ambrico, M. (2016). Melanin, a long lasting history bridging natural pigments and organic bioelectronics. Polymer International, 65(11), 1249–1250. https://doi.org/10.1002/pi.5239
  • Andrés-Bello, A., Barreto-Palacios, V., García-Segovia, P., Mir-Be, L. J., & Martínez-Monzó, J. (2013). Effect of pH on color and texture of food products. Food Engineering Reviews, 5(3), 158–170. https://doi.org/10.1007/s12393-013-9067-2
  • Avalos, J., & Limón, M. C. (2015). Biological roles of fungal carotenoids. Current Genetics, 61(3), 309–324. https://doi.org/10.1007/s00294-014-0454-x
  • Chen, Y., Xie, B., Yang, J., & Sun, Z. (2018). Identification of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions. Food Chemistry, 240, 204–211. https://doi.org/10.1016/j.foodchem.2017.06.067
  • Cho, Y. J., Park, J. P., Hwang, H. J., Kim, S. W., Choi, J. W., & Yun, J. W. (2002). Production of red pigment by submerged culture of Paecilomyces sinclairii. Letters in Applied Microbiology, 35(3), 195–202. https://doi.org/10.1046/j.1472-765X.2002.01168.x
  • Darwesh, O. M., Barakat, K. M., Mattar, M. Z., Sabae, S. Z., & Hassan, S. H. (2019). Production of antimicrobial blue green pigment pyocyanin by marine Pseudomonas aeruginosa. Biointerface Research in Applied Chemistry, 9(5), 4334–4339. https://doi.org/10.33263/BRIAC95.334339
  • Darwesh, O. M., Eweys, A. S., & Zhao, Y. S. (2023). Application of environmental-safe fermentation with Saccharomyces cerevisiae for increasing the cinnamon biological activities. Bioresources and Bioprocessing, 10(1), 12. https://doi.org/10.1186/s40643-023-00632-9
  • Darwesh, O. M., Ibrahim, A. M., Hesham, S. A., Sulaiman, A. A., & You-Kwan, O. (2020). Isolation and optimization of Monascus ruber OMNRC45 for red pigment production and evaluation of the pigment as a food colorant. Applied Sciences, 10(24), 8867. https://doi.org/10.3390/app10248867
  • Dufossé, L. (2018). Microbial pigments from bacteria, yeasts, fungi, and microalgae for the food and feed industries. Natural and Artificial Flavoring Agents and Food Dyes, 7, 113–132. https://doi.org/10.3390/microorganisms7070186
  • Dufosse, L., Fouillaud, M., Caro, Y., Mapari, S. A., & Sutthiwong, N. (2014). Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Current Opinion in Biotechnology, 26(26), 56–61. https://doi.org/10.1016/j.copbio.2013.09.007
  • Eweys, A. S., Zhao, Y. S., & Darwesh, O. M. (2022). Improving the antioxidant and anticancer potential of Cinnamomum cassia via fermentation with Lactobacillus plantarum. Biotechnology Reports, 36, e00768. https://doi.org/10.1016/j.btre.2022.e00768
  • Fernández-López, J. A., Roca, M. J., Angosto, J. M., & Obón, J. M. (2018). Betaxanthin-rich extract from cactus pear fruits as yellow water-soluble colorant with potential application in foods. Plant Foods for Human Nutrition, 73(2), 146–153. https://doi.org/10.1007/s11130-018-0664-3
  • Ferreira, J. A., Mahboubi, A., Lennartsson, P. R., & Taherzadeh, M. J. (2016). Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects. Bioresource Technology, 215, 334–345. https://doi.org/10.1016/j.biortech.2016.03.018
  • Finger, S., Godoy, F. A., Wittwer, G., Aranda, C. P., Calderón, R., & Miranda, C. D. (2019). Purification and characterization of indochrome type blue pigment produced by Pseudarthrobacter sp. 34LCH1 isolated from Atacama desert. Journal of Industrial Microbiology & Biotechnology, 46(1), 101––111. https://doi.org/10.1007/s10295-018-2088-3
  • Gmoser, R., Ferreira, J. A., Lennartsson, P. R., & Taherzadeh, M. J. (2017). Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biology and Biotechnology, 4(4), 1–25. https://doi.org/10.1186/s40694-017-0033-2
  • Gong, X. B., Luo, H., Wu, X., Liu, H., Sun, C. W., & Chen, S. C. (2022). Production of red pigments by a newly isolated Talaromyces aurantiacus strain with led stimulation for screen printing. Indian Journal of Microbiology, 62(2), 280–292. https://doi.org/10.1007/s12088-022-01008-x
  • Habimana, P., Jiang, Y., Gao, J., Ndayambaje, J. B., Darwesh, O. M., & Mwizerwal. (2022). Enhancing laccase stability and activity for dyes decolorization using ZIF-8@MWCNT nanocomposite. Chinese Journal of Chemical Engineering, 48, 66–75. https://doi.org/10.1016/j.cjche.2021.05.044
  • Hernández-Almanza, A., Montañez-Sáenz, J., Martínez-Ávila, C., Rodríguez-Herrera, R., & Aguilar, C. N. (2014). Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation. Food Bioscience, 7, 31–36. https://doi.org/10.1016/j.fbio.2014.04.001
  • Indra Arulselvi, P., Umamaheswari, S., Ranandkumar, S. G., Karthik, C., & Jayakrishna, C. (2014). Screening of yellow pigment producing bacterial isolates from various eco-climatic areas and analysis of the carotenoid produced by the isolate. Journal of Food Processing & Technology, 5(1), 1–4. https://doi.org/10.4172/2157-7110.1000292
  • Kim, M. J., Kwak, H. S., & Kim, S. S. (2018). Effects of salinity on bacterial communities, Maillard reactions, isoflavone composition, antioxidation and antiproliferation in Korean fermented soybean paste (Doenjang). Food Chemistry, 245, 402–409. https://doi.org/10.1016/j.foodchem.2017.10.116
  • Kim, Y. E., Matter, I. A., Lee, N., Jung, M., Lee, Y. C., Choi, S. A., Lee, S. Y., Kim, J. R., & Oh, Y. K. (2020). Enhancement of astaxanthin production by Haematococcus pluvialis using magnesium aminoclay nanoparticles. Bioresource Technology, 307, 123270. https://doi.org/10.1016/j.biortech.2020.123270
  • Kum, S. J., Yang, S. O., Lee, S. M., Chang, P. S., Choi, Y. H., Lee, J. J., Hurh, B. S., & Kim, Y. S. (2015). Effects of Aspergillus species inoculation and their enzymatic activities on the formation of volatile components in fermented soybean paste (Doenjang). Journal of Agricultural and Food Chemistry, 63(5), 1401–1418. https://doi.org/10.1021/jf5056002
  • Lederberg, J. (1964). Computation of molecular formulas for mass spectrometry. Holden-Day.
  • Li, Z., Dong, L., Huang, Q., & Wang, X. (2016). Bacterial communities and volatile compounds in doubanjiang, a Chinese traditional red pepper paste. Journal of Applied Microbiology, 120(6), 1585–1594. https://doi.org/10.1111/jam.13130
  • Lin, L., & Xu, J. (2020). Fungal pigments and their roles associated with human health. Journal of Fungi, 6(4), 280. https://doi.org/10.3390/jof6040280
  • Liu, J., Kanetake, S., Wu, Y. H., Tam, C., Cheng, L. W., Land, K. M., & Friedman, M. (2016). Antiprotozoal effects of the tomato tetrasaccharide glycoalkaloid tomatine and the aglycone tomatidine on mucosal trichomonads. Journal of Agricultural and Food Chemistry, 64(46), 8806–8810. https://doi.org/10.1021/acs.jafc.6b04030
  • Li, F. W., Xue, F., & Yu, X. (2017). GC–MS, FTIR and Raman analysis of antioxidant components of red pigments from Stemphylium lycopersici. Current Microbiology, 74(4), 532–539. https://doi.org/10.1007/s00284-017-1220-3
  • Li, Y. R., Zhou, W. W., & Wang, Z. Y. (2020). Relationship between antioxidant activity and spectrum-effect of hawthorn leaf extracts. Chinese Pharmaceutical Journal, 55(20), 1673–1679. https://doi.org/10.11669/cpj.2020.20.004
  • Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E. J., & McLaughlin, J. L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(5), 31–34. https://doi.org/10.1055/s-2007-971236
  • Moukette, B. M., Pieme, C. A., Njimou, J. R., Biapa, C. P. N., Marco, B., & Ngogang, J. Y. (2015). In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biological Research, 48(1), 1–17. https://doi.org/10.1186/s40659-015-0003-1
  • Mourad, R., Darwesh, O., & Abdel-Hakim, A. (2020). Enhancing physico-mechanical and antibacterial properties of natural rubber using synthesized ag-sio2 nanoparticles. International Journal of Biological Macromolecules, 164, 3243–3249. https://doi.org/10.1016/j.ijbiomac.2020.08.063
  • Mumtaz, R., Bashir, S., Numan, M., Shinwari, Z. K., & Ali, M. (2019). Pigments from soil bacteria and their therapeutic properties: A mini review. Current Microbiology, 76(6), 783–790. https://doi.org/10.1007/s00284-018-1557-2
  • Narsing Rao, M. P., Xiao, M., & Li, W. J. (2017). Fungal and bacterial pigments: Secondary metabolites with wide applications. Frontiers in Microbiology, 8, 1113. https://doi.org/10.3389/fmicb.2017.01113
  • Niu, C., Fan, Z., Zheng, F., Li, Y., Liu, C., Wang, J., & Li, Q. (2018). Isolation and identification of gas-producing spoilage microbes in fermented broad bean paste. Food Control, 84, 8–16. https://doi.org/10.1016/j.foodcont.2017.07.004
  • Niu, D. F., Wang, B., & Zhang, J. (2019). Study on antioxidant activity of different solvent extracts of rape bee pollen and rape bee pollen and rape bee bread. Food Research and Development, 40(6), 42–46. https://doi.org/10.3969/j.issn.10056521.2019.06.008
  • Obanolu, E., & Yazc, A. (2021). Isolation, characterization, and antibiofilm activity of pigments synthesized by Rhodococcus sp. sc1. Current Microbiology, 79(1), 15. https://doi.org/10.1007/s00284-021-02694-4
  • Olanrewaju, O. S., Ayangbenro, A. S., Glick, B. R., & Babalola, O. O. (2019). Plant health: Feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology, 103(3), 1155–1166. https://doi.org/10.1007/s00253-018-9556-6
  • Pagano, M. C., & Dhar, P. P. (2015). Fungal pigments: An overview. In V.K. Mach, R. L. Gupta, & S. Sreenivasaprasad. Fungal bio-molecules: Sources, applications and recent developments (pp.173–181). Wiley.
  • Pang, G., Sun, T. T., Yu, Z. Z., Yuan, T., Liu, W., Zhu, H., Gao, Q., Yang, D. Q., Kubicek, C. P., Zhang, J., & Shen, Q. R. (2020). Azaphilones biosynthesis complements the defence mechanism of Trichoderma guizhouense against oxidative stress. Environmental Microbiology, 22(11), 4808–4824. https://doi.org/10.1111/1462-2920.15246
  • Pavesi, C., Flon, V., Mann, S., Leleu, S., Prado, S., & Franck, X. (2021). Biosynthesis of azaphilones: A review. Natural Product Reports, 38(6), 1058–1071. https://doi.org/10.1039/D0NP00080A
  • Peng, C. X., Wang, Q. P., Liu, H. R., Gao, B., Sheng, J., & Gong, J. S. (2013). Effects of Zijuan pu-erh tea theabrownin on metabolites in hyperlipidemic rat feces by Py-GC/MS. Journal of Analytical and Applied Pyrolysis, 104, 226–233. https://doi.org/10.1016/j.jaap.2013.07.011
  • Qiu, X. D., Zhang, X., & Bai, Y. (2019). Application of direct analysis in real time mass spectrometry in environmental pollutant screening. Journal of Chinese Mass Spectrometry Society, 44(2), 146–157. https://doi.org/10.7538/zpxb.2022.0194
  • Ramesh, C., Vinithkumar, N. V., Kirubagaran, R., Venil, C. K., & Dufossé, L. (2019). Multifaceted applications of microbial pigments: Current knowledge, challenges and future directions for public health implications. Microorganisms, 7(7), 186. https://doi.org/10.3390/microorganisms_7070186
  • Sandeep, K., Nikhil, K., Partha, R., & Sondhi, S. M. (2013). Efficient synthesis of piperazine-2,6-diketone and 4-(1H-indole-2-carbonyl) piperazine-2,6-diketone derivatives and their evaluation for anticancer activity. Medicinal Chemistry Research, 22(10), 4600–4609. https://doi.org/10.1007/s00044-012-0438-7
  • Sen, T., Barrow, C. J., & Deshmukh, S. K. (2019). Microbial pigments in the food industry challenges and the way forward. Frontiers in Nutrition, 6(7), 1–14. https://doi.org/10.3389/fnut.2019.00007
  • Solis, P. N., Wright, C. W., Anderson, M. M., Gupta, M. P., & Phillipson, J. D. (1993). A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Medica, 59(03), 250–252. https://doi.org/10.1055/s-2006-959661
  • Suwannarach, N., Kumla, J., Nishizaki, Y., Sugimoto, N., Meerak, J., Matsui, K., & Lumyong, S. (2019). Optimization and characterization of red pigment production from an endophytic fungus, Nigrospora aurantiaca CMU-ZY2045, and its potential source of natural dye for use in textile dyeing. Applied Microbiology and Biotechnology, 103(17), 6973–6987. https://doi.org/10.1007/s00253-019-09926-5
  • Tirumale, S., & Wani, N. A. (2018). Biopigments: Fungal Pigments. In P. Gehlot and J. Singh (Eds.), Fungi and their role in sustainable development: Current Perspectives (pp. 413–426). Springer.
  • Tong, S., Wang, H., Sha, A. L., Bai, T. N., Gong, J. H., Jin, W. J., Dai, L. L., Ba, G. N., Cho, S. B., & Fu, M. H. (2021). Protective effect and mechanisms of action of Mongolian medicine Sulongga-4 on pyloric ligation-induced gastroduodenal ulcer in rats. World Journal of Gastroenterology, 27(16), 1770–1784. https://doi.org/10.3748/wjg.v27.i16.1770
  • Wang, H. L., Li, P., Liu, Y. F., Ren, Z. F., & Wang, G. (2012). Overproduction of a potential red pigment by a specific self-immobilization biomembrane-surface liquid culture of Penicillium novae-zeelandiae. Bioprocess and Biosystem Engineering, 35(8), 1407–1416. https://doi.org/10.1007/s00449-012-0729-x
  • Wolfe, B. E., & Dutton, R. J. (2015). Fermented foods as experimentally tractable microbial ecosystems. Cell, 161(1), 49–55. https://doi.org/10.1016/j.cell.2015.02.034
  • Wrolstad, R. E., & Culver, C. A. (2012). Alternatives to those artificial FD&C food colorants. Annual Review of Food Science and Technology, 3(1), 59–77. https://doi.org/10.1146/annurev-food-022811-101118
  • Yu, X., ZHANG, W., & WU, Y. J. (2022). Production mechanism and biological activity of microbial pigments. Acta Microbiologica Sinica, 62(4), 1231–1246. https://doi.org/10.13343/j.cnki.wsxb.20210465
  • Zhang, B., Li, S., Chen, S., Ren, T., & Han, X. (2016). Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe. Scientific Reports, 6(1), 19990. https://doi.org/10.1038/srep19990
  • Zhao, T. X., Min, Y., Luo, J. X., Chen, S. Z., Qiu, B. H., Wang, Y. Q., Qiao, H. Z., & Wang, J. (2023). Antioxidant activity and stability of Rehmannia glutinosa residues pigment. Feed Research. https://kns.cnki.net/kcms/detail//11.2114.S.20230217.1702.011
  • Zhao, Y. X., & Sun, X. Y. (2010). Spectral identification of organic molecular structure. Science press.
  • Zhou, M. H., Zhang, Y., Chen, Y. J., Zhang, F. Y., & Yang, D. H. (2022). Optimization of the decolorization conditions of Rose Bengal by using Aspergillus niger TF05 and a decolorization mechanism. Microbiology (Reading, England), 168(1), 001128. https://doi.org/10.1099/mic.0.001128