593
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Botrytis cinerea induced phytonutrient degradation of strawberry puree: effects of combined preservation approaches with high hydrostatic pressure and synthetic or natural antifungal additives

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 451-463 | Received 16 Dec 2022, Accepted 02 Jun 2023, Published online: 22 Jun 2023

References

  • Ahammed, G. J., Li, C. X., Li, X., Liu, A., Chen, S., & Zhou, J. (2020). Overexpression of tomato RING E3 ubiquitin ligase gene SlRING1 confers cadmium tolerance by attenuating cadmium accumulation and oxidative stress. Physiologia Plantarum, 173(1), 449–459. https://doi.org/10.1111/ppl.13294
  • Association of Official Analytical Chemists International. (2002). Official methods of analysis of AOAC international (Vol. I and II, 17th ed.). AOAC International.
  • Balasubramaniam, V. M., Barbosa-Cánovas, G. V., Barbosa-Cánovas, G. V., & Lelieveld, H. L. M. (Eds.). (2016). High pressure processing of food: Principles, technology and applications. Springer. https://doi.org/10.1007/978-1-4939-3234-4
  • Cao, X., Zhang, Y., Zhang, F., Wang, Y., Yi, J., & Liao, X. (2011). Effects of high hydrostatic pressure on enzymes, phenolic compounds, anthocyanins, polymeric color and color of strawberry pulps. Journal of the Science of Food and Agriculture, 91(5), 877–885. https://doi.org/10.1002/jsfa.4260
  • Chakraborty, S., Kaushik, N., Rao, P. S., & Mishra, H. N. (2014). High-pressure inactivation of enzymes: A review on its recent applications on fruit purees and juices. Comprehensive Reviews in Food Science and Food Safety, 13(4), 578–596 752. https://doi.org/10.1111/1541-4337.12071
  • Chen, S.-C., Ren, J.-J., Zhao, H.-J., Wang, X.-L., Wang, T.-H., Jin, S.-D., Wang, Z.-H., Li, C.-Y., Liu, A.-R., Lin, X.-M., & Ahammed, G. J. (2019). Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance, and energy ow in cucumber roots. Phytopathology, 109(6), 972–982. https://doi.org/10.1094/PHYTO-09-18-0342-R
  • Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J.-M., Simon, A., & Viaud, M. (2007). Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 277(1), 1–10. https://doi.org/10.1111/j.1574-6968.2007.00930.x
  • Dehghan, P., Mohammadi, A., Mohammadzadeh-Aghdash, H., & Dolatabadi, J. E. N. (2018). Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents. Trends in Food Science & Technology, 80, 123–130. https://doi.org/10.1016/j.tifs.2018.07.012
  • Domergue, F., Helms, G. L., Prusky, D., & Browse, J. (2000). Antifungal compounds from idioblast cells isolated from avocado fruits. Phytochemistry, 54(2), 183–189. https://doi.org/10.1016/s0031-9422(00)00055-8
  • Echenique Martínez, A. A., Rodriguez-Sanchez, D. G., Troncoso-Rojas, R., Hernández-Brenes, C., Robles-Ozuna, L. E., & Montoya-Ballesteros, L. C. (2021). Antifungal effect of acetogenins from avocado (Persea americana Mill.) seed against the fungus Botrytis cinerea. International Food Research Journal, 28(5), 1078–1087. https://doi.org/10.47836/ifrj.28.5.21
  • El-Sharkawy, H. H. A., Rashad, Y. M., & Ibrahim, S. A. (2018). Biocontrol of stem rust disease of wheat using arbuscular mycorrhizal fungi and Trichoderma spp. Physiological and Molecular Plant Pathology, 103, 84–91. https://doi.org/10.1016/j.pmpp.2018.05.002
  • Evelyn, & Silva, F. V. M. (2019). Heat assisted HPP for the inactivation of bacteria, moulds and yeasts spores in foods: Log reductions and mathematical models. Trends in Food Science & Technology, 88, 143–156. https://doi.org/10.1016/j.tifs.2019.03.016
  • Frans, M., Aerts, R., Ceusters, N., Luca, S., & Ceusters, J. (2021). Possibilities of modified atmosphere packaging to prevent the occurrence of internal fruit rot in bell pepper fruit (Capsicum annuum) caused by Fusarium spp. Postharvest Biology and Technology, 178, 111545. https://doi.org/10.1016/j.postharvbio.2021.111545
  • Gao, G., Ren, P., Cao, X., Yan, B., Liao, X., Sun, Z., & Wang, Y. (2016). Comparing quality changes of cupped strawberry treated by high hydrostatic pressure and thermal processing during storage. Food and Bioproducts Processing, 100, 221–229. https://doi.org/10.1016/j.fbp.2016.06.017
  • Gómez-Maqueo, A., Welti-Chanes, J., & Cano, M. P. (2020). Release mechanisms of bioactive compounds in fruits submitted to high hydrostatic pressure: A dynamic microstructural analysis based on prickly pear cells. Food Research International, 130, 108909. https://doi.org/10.1016/j.foodres.2019.108909
  • González, M., Brito, N., & González, C. (2014). Identification of glycoproteins secreted by wild-type Botrytis cinerea and by protein O-mannosyltransferase mutants. BMC Microbiology, 14(1), 254. https://doi.org/10.1186/s12866-014-0254-y
  • González, V. E., Liñeiro, E., Colby, T., Harzen, A., Garrido, C., Cantoral, J. M., & Fernández-Acero, F. J. (2015). Proteomic profiling of Botrytis cinerea conidial germination. Archives of Microbiology, 197(2), 117–133. https://doi.org/10.1007/s00203-014-1029-4
  • Gordo, D. A. M. (2018). Los compuestos fenólicos, un acercamiento a su biosíntesis, síntesis y actividad biológica. Revista de Investigación Agraria y Ambiental, 9(1), 81–104. https://doi.org/10.22490/21456453.1968
  • Graca, A., Esteves, E., Nunes, C., Abadias, M., & Quintas, C. (2017). Microbiological quality and safety of minimally processed fruits in the marketplace of Southern Portugal. Food Control, 73(Part B), 775–783. https://doi.org/10.1016/j.foodcont.2016.09.046
  • Hurtado, A., Guàrdia, M. D., Picouet, P., Jofré, A., Bañón, S., & Ros, J. M. (2019). Extended shelf life of multi-vegetable smoothies by high-pressure processing compared to heat treatment. Part II: Retention of selected nutrients and sensory quality. Journal of Food Processing and Preservation, 43(11), e14210. https://doi.org/10.1111/jfpp.14210
  • Hurtado, A., Guàrdia, M. D., Picouet, P., Jofré, A., Ros, J. M., & Bañón, S. (2017). Stabilization of red fruit-based smoothies by high-pressure processing. Part II: Effects on sensory quality and selected nutrients. Journal of the Science of Food and Agriculture, 97(3), 777–783. https://doi.org/10.1002/jsfa.7795
  • Irakli, M. N., Samanidou, V. F., Biliaderis, C. G., & Papadoyannis, I. N. (2012). Simultaneous determination of phenolic acids and flavonoids in rice using solid‐phase extraction and RP‐HPLC with photodiode array detection. Journal of Separation Science, 35(13), 1603–1611. https://doi.org/10.1002/jssc.201200140
  • Jacobo Velázquez, D. A., Santana-Gálvez, J., & Cisneros-Zevallos, L. (2021). Designing next-generation functional food and beverages: Combining non-thermal processing technologies and postharvest abiotic stresses. Food Engineering Reviews, 13(3), 592–600. https://doi.org/10.1007/s12393-020-09244-x
  • Jang, A. R., Han, A., Lee, S., Jo, S., Song, H., Kim, D., & Lee, S.-Y. (2021). Evaluation of microbiological quality and safety of fresh-cut fruit products at retail levels in Korea. Food Science Biotechnology, 30(30), 1393–1401. https://doi.org/10.1007/s10068-021-00974-0
  • Javanmardi, Z., Saba, M. K., Nourbakhsh, H., & Amini, J. (2023). Efficiency of nanoemulsion of essential oils to control Botrytis cinerea on strawberry surface and prolong fruit shelf life. International Journal of Food Microbiology, 384, 109979. https://doi.org/10.1016/j.ijfoodmicro.2022.109979
  • León López, L., Guzmán-Ortíz, D. L. A., García Berumen, J. A., Chávez Marmolejo, C. G., & Peña-Cabriales, J. J. (2014). Considerations for improving competitiveness of the “El Bajío” region in domestic strawberry production. Revista Mexicana de Ciencias Agrícolas, 5(4), 673–686. https://doi.org/10.29312/remexca.v5i4.929
  • Liang, D. (2018). A salutary role of reactive oxygen species in intercellular tunnel-mediated communication. Frontiers in Cell and Developmental Biology, 6, 2. https://doi.org/10.3389/fcell.2018.00002
  • Luck, E., & Jager, M. (2000). Conservación química de los alimentos: Características, usos, efectos (2nd ed., pp. 346). Editorial Acribia. https://books.google.com.mx/books/about/Conservaci%C3%B3n_qu%C3%ADmica_de_los_alimentos.html?id=au0TPwAACAAJ&redir_esc=y
  • Luu-Thi, H., Grauwet, T., Vervoort, L., Hendrickx, M., & Michiels, C. W. (2014). Kinetic study of Bacillus cereus spore inactivation by high pressure high temperature treatment. Innovative Food Science & Emerging Technologies, 26, 12–17. https://doi.org/10.1016/j.ifset.2014.07.005
  • Marszałek, K., Woźniak, Ł., Skąpska, S., & Mitek, M. (2017). High pressure processing and thermal pasteurization of strawberry purée: Quality parameters and shelf-life evaluation during cold storage. Journal of Food Science and Technology, 54(3), 832–841. https://doi.org/10.1007/s13197-017-2529-4
  • Mohammadzadeh-Aghdash, H., Sohrabi, Y., Mohammadi, A., Shanehbandi, D., Dehghan, P., & Dolatabadi, J. E. N. (2018). Safety assessment of sodium acetate, sodium diacetate and potassium sorbate food additives. Food Chemistry, 257, 211–215. https://doi.org/10.1016/j.foodchem.2018.03.020
  • Nakata, Y., & Izumi, H. (2020). Microbiological and quality responses of strawberry fruit to high CO2 controlled atmosphere and modifies atmosphere storage. HortScience, 55(3), 386–391. https://doi.org/10.21273/HORTSCI14771-19
  • Navarro-Baez, J. E., Martínez, L. M., Welti-Chanes, J., Buitimea-Cantúa, G. V., & Escobedo-Avellaneda, Z. (2022). High hydrostatic pressure to increase the biosynthesis and extraction of phenolic compounds in food: A review. Molecules, 27(5), 1502. https://doi.org/10.3390/molecules27051502
  • Nazir, M., Arif, S., Khan, R. S., Nazir, W., Khalid, N., & Maqsood, S. (2019). Opportunities and challenges for functional and medicinal beverages: Current and future trends. Trends in Food Science & Technology, 88, 513–526. https://doi.org/10.1016/j.tifs.2019.04.011
  • Official Mexican Standard (NOM). (2002a). NOM-213-SSA1 - Products and services. Processed meat products. Sanitary specifications. test methods.
  • Official Mexican Standard (NOM). (2002b). NOM-FF-062 - on industrialized food products for human consumption - fresh fruit - strawberry (Fragaria x ananassa, Dutch) - specifications and test method.
  • Ortega, V. G., Ramírez, J. A., Velázquez, G., Tovar, B., Mata, M., & Montalvo, E. (2013). Effect of high hydrostatic pressure on antioxidant content of Ataulfo mango during postharvest maturation. Food Science & Technology, 33(3), 561–568. https://doi.org/10.1590/S0101-20612013005000062
  • Pacheco, A., Rodríguez‐Sánchez, D. G., Villarreal‐Lara, R., Navarro‐Silva, J. M., Senés‐Guerrero, C., & Hernández‐Brenes, C. (2017). Stability of the antimicrobial activity of acetogenins from avocado seed, under common food processing conditions, against Clostridium sporogenes vegetative cell growth and endospore germination. International Journal of Food Science and Technology, 52(11), 2311–2323. https://doi.org/10.1111/ijfs.13513
  • Pimenta, I., Nuñez, S., Martínez-Blázquez, J. A., Tomás-Barberán, F. A., Perrone, D., & Monteiro, M. (2020). Effect of high hydrostatic pressure and drying methods on phenolic compounds profile of jabuticaba (Myrciaria jaboticaba) peel and seed. Food Chemistry, 309(2020), 125794. https://doi.org/10.1016/j.foodchem.2019.125794
  • Pinto, C. A., Moreira, S. A., Fidalgo, L. G., Inácio, R. S., Barba, F. J., & Saraiva, J. A. (2020). Effects of high‐pressure processing on fungi spores: Factors affecting spore germination and inactivation and impact on ultrastructure. Comprehensive Reviews in Food Science and Food Safety, 19(2), 553–573. https://doi.org/10.1111/1541-4337.12534
  • Pravallika, K., & Chakraborty, S. (2022). Effect of nonthermal technologies on the shelf life of fruits and their products: A review on the recent trends. Applied Food Research, 2(2), 100229. https://doi.org/10.1016/j.afres.2022.100229
  • Quispe, J., Saldaña, J., Verde, T., & Valderrama, S. (2010). Effect of potassium sorbate at different concentrations and exposure time on the cell cycle and the genetic material in root meristems of Allium cepa L “onion”. Revista del Encuentro Científico Internacional, 7(1), 71–78. https://revistaeciperu.com/wp-content/uploads/2019/01/20100011.pdf
  • Rodríguez Roque, M. J., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., & Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods, 14, 33–43. https://doi.org/10.1016/j.jff.2015.01.020
  • Rodríguez Sánchez, D. G., Pacheco, A., García-Cruz, M. I., Gutierrez-Uribe, J. A., Benavides-Lozano, J. A., & Hernandez-Brenes, C. (2013). Isolation and structure elucidation of avocado seed (Persea americana) lipid derivatives that inhibit Clostridium sporogenes endospore germination. Journal of Agricultural and Food Chemistry, 61(30), 7403–7411. https://doi.org/10.1021/jf401407s
  • Rodríguez Sánchez, D. G., Pacheco, A., Villarreal Lara, R., Ramos-González, M. R., Ramos-Parra, P. A., Granados-Principal, S., Hernández-Brenes, C., García-Rivas, G., & Hernández-Brenes, C. (2019). Chemical profile and safety assessment of a food-grade acetogenin-enriched antimicrobial extract from avocado seed. Molecules, 24(13), 2354. https://doi.org/10.3390/molecules24132354
  • Salinas, C., Hernández, C., Rodríguez, D. G., Castillo, E., Navarro, J., & Pacheco, A. (2017). Inhibitory activity of avocado seed fatty acid derivatives (acetogenins) against Listeria monocytogenes. Journal of Food Science, 82(1), 134–144. https://doi.org/10.1111/1750-3841.13553
  • Sarker, M. R., Akhtar, S., Torres, J. A., & Paredes-Sabja, D. (2015). High hydrostatic pressure-induced inactivation of bacterial spores. Critical Reviews in Microbiology, 41(1), 18–26. https://doi.org/10.3109/1040841X.2013.788475
  • Sawant, S. G., & Gawai, D. U. (2011). Effect of fungal infections on the nutritional value of papaya fruits. Current Botany, 2(1). https://updatepublishing.com/journal/index.php/cb/article/view/1312
  • Silva, F. V. M., & Evelyn, E. (2020). Resistant molds as pasteurization target for cold distributed high pressure and heat assisted high pressure processed fruit products. Journal of Food Engineering, 282, 109998. https://doi.org/10.1016/j.jfoodeng.2020.109998
  • Skrede, G., Wrolstad, R., Lea, P., & Enersen, G. (1992). Color stability of strawberry and blackcurrant syrups. Journal of Food Science, 57(1), 172–177. https://doi.org/10.1111/j.1365-2621.1992.tb05449.x
  • Ślesak, I., Libik, M., Karpinska, B., Karpinski, S., & Miszalski, Z. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica, 54(1), 39–50. https://doi.org/10.18388/abp.2007_3267
  • Song, B., Zhu, P., Zhang, Y., Ju, N., Si, X., Pang, X., & Zhang, S. (2022). Preparation and quality assessment of cream cheese processed by combined high hydrostatic pressure thermal processing and spore-induced germination. Journal of Food Engineering, 341, 111319. https://doi.org/10.1016/j.jfoodeng.2022.111319
  • Szczepańska, J., Barba, F. J., Skąpska, S., & Marszałek, K. (2020). High pressure processing of carrot juice: Effect of static and multi-pulsed pressure on the polyphenolic pro le, oxidoreductase activity and colour. Food Chemistry, 307, 125549. https://doi.org/10.1016/j.foodchem.2019.125549
  • Teribia, N., Buvé, C., Bonerz, D., Aschoff, J., Hendrickx, M., & Van Loey, A. (2021). Impact of processing and storage conditions on color stability of strawberry puree: The role of PPO reactions revisited. Journal of Food Engineering, 294, 110402. https://doi.org/10.1016/j.jfoodeng.2020.110402
  • Ugolini, L., Martini, C., Lazzeri, L., & D’avino, L. (2014). Control of postharvest gray mold (Botrytis cinerea Per.: Fr.) on strawberries by glucosinolate-derived allyl-isothiocyanate treatments. Postharvest Biology and Technology, 90, 34–39. https://doi.org/10.1016/j.postharvbio.2013.12.002
  • Van Leeuwen, M., Krijgsheld, P., Bleichrodt, R., Menke, H., Stam, H., Stark, J., Wösten, H. A. B., & Dijksterhuis, J. (2013). Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles. Studies in Mycology, 74, 59–70. https://doi.org/10.3114/sim0009
  • Vázquez Gutiérrez, J. L., Plaza, L., Hernando, I., Sánchez-Moreno, C., Quiles, A., De Ancos, B., & Cano, M. P. (2013). Changes in the structure and antioxidant properties of onions by high pressure treatment. Food & Function, 4(4), 586–591. https://doi.org/10.1039/c3fo30253a
  • Vidal, A. M. (2010). Respuestas fisiológicas de los cítricos sometidos a condiciones de estrés biótico y abiótico. Aspectos comunes y específicos [ Tesis Doctoral]. Universitat Jaume I. http://hdl.handle.net/10803/22656
  • Villa-Rojas, R., Sosa-Morales, M. E., López-Malo, A., & Tang, J. (2012). Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree. International Journal of Food Microbiology, 155(3), 269–272. https://doi.org/10.1016/j.ijfoodmicro.2012.02.021
  • Villarreal Lara, R., Rodríguez-Sánchez, D. G., Díaz De La Garza, R. I., García-Cruz, M. I., Castillo, A., Pacheco, A., & Hernández-Brenes, C. (2019). Purified avocado seed acetogenins: Antimicrobial spectrum and complete inhibition of Listeria monocytogenes in a refrigerated food matrix. CyTA-Journal of Food, 17(1), 228–239. https://doi.org/10.1080/19476337.2019.1575908
  • Wang, Q., Chen, X., Chai, X., Xue, D., Zheng, W., Shi, Y., & Wang, A. (2019). The involvement of jasmonic acid, ethylene, and salicylic acid in the signaling pathway of Clonostachys rosea-Induced resistance to gray mold disease in tomato. Phytopathology, 109(7), 1102–1114. https://doi.org/10.1094/PHYTO-01-19-0025-R
  • Wang, M., Jiang, N., Wang, Y., Jiang, D., & Feng, X. (2017). Characterization of phenolic compounds from early and late ripening sweet cherries and their antioxidant and antifungal activities. Journal of Agricultural and Food Chemistry, 65(26), 5413–5420. https://doi.org/10.1021/acs.jafc.7b01409
  • Xi, J., & Luo, S. (2016). The mechanism for enhancing extraction of ferulic acid from Radix Angelica sinensis by high hydrostatic pressure. Separation and Purification Technology, 165, 208–213. https://doi.org/10.1016/j.seppur.2016.04.011
  • Xu, X. H., Jiang, Z. L., Feng, F. Q., & Lu, R. R. (2018). Mechanisms of Nα-lauroyl arginate ethyl ester against Penicillium digitatum and Pectobacterium carotovorum subsp. carotovorum. Journal of Food Science and Technology, 55(9), 3675–3682. https://doi.org/10.1007/s13197-018-3296-6
  • Yasunaga, E., Fukuda, S., Takata, D., Spreer, W., Sardsud, V., & Nakano, K. (2018). Quality changes in fresh mango fruits (Mangifera indica L. ‘Nam Dok Mai’) under actual distribution temperature profile from Thailand to Japan. Environmental Control in Biology, 56(2), 45–49. https://doi.org/10.2525/ecb.56.45
  • Zhang, W., Liang, L., Pan, X., Lao, F., Liao, X., & Wu, J. (2021). Alterations of phenolic compounds in red raspberry juice induced by high-hydrostatic-pressure and high-temperature short-time processing. Innovative Food Science & Emerging Technologies, 67, 102569. https://doi.org/10.1016/j.ifset.2020.102569