1,433
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Potentials of superfine grinding in quality modification of food powders

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 530-541 | Received 31 Mar 2023, Accepted 14 Aug 2023, Published online: 29 Aug 2023

References

  • Aboshora, W. (2016). Functional foods: Effect of superfine grinding on functional properties and antioxidant capacities of dietary fiber from cereal bran, fruits and vegetables. Bioaccent Online Publishing Nutrition, 1(1), 1–2. https://doi.org/10.24947/baojn/2/1/00109
  • Ahmed, J. (2015). Effect of barley β-glucan concentrate on oscillatory and creep behavior of composite wheat flour dough. Journal of Food Engineering, 152, 85–94. https://doi.org/10.1016/j.jfoodeng.2014.11.018
  • Augusto-Obara, T. R., Oliveira, J. D., Gloria, E. M. D., Spoto, M. H. F., Godoy, K., Vieira, T. M. F. D. S., & Scheuermann, E. (2019). Benefits of superfine grinding method on antioxidant and antifungal characteristic of Brazilian green propolis extract. Scientia Agricola, 76(5), 398–404. https://doi.org/10.1590/1678-992X-2018-0056
  • Balasubramanian, S., Gupta, M. K., & Singh, K. K. (2012). Cryogenics and its application with reference to spice grinding: A review. Critical Reviews in Food Science and Nutrition, 52(9), 781–794. https://doi.org/10.1080/10408398.2010.509552
  • Baláž, P. (2003). Mechanical activation in hydrometallurgy. International Journal of Mineral Processing, 72(1–4), 341–354. https://doi.org/10.1016/S0301-7516(03)00109-1
  • Becker, L., Zaiter, A., Petit, J., Zimmer, D., Karam, M. C., Baudelaire, E., Scher, J., & Dicko, A. (2016). Improvement of antioxidant activity and polyphenol content of hypericum perforatum and Achillea millefolium powders using successive grinding and sieving. Industrial Crops and Products, 87, 116–123. https://doi.org/10.1016/j.indcrop.2016.04.036
  • Blanchard, C., Labouré, H., Verel, A., & Champion, D. (2012). Study of the impact of wheat flour type, flour particle size and protein content in a cake-like dough: Proton mobility and rheological properties assessment. Journal of Cereal Science, 56(3), 691–698. https://doi.org/10.1016/j.jcs.2012.08.005
  • Brewer, L. R., Kubola, J., Siriamornpun, S., Herald, T. J., & Shi, Y. C. (2014). Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chemistry, 152, 483–490. https://doi.org/10.1016/j.foodchem.2013.11.128
  • Cacace, J. E., & Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59(4), 379–389. https://doi.org/10.1016/S0260-8774(02)00497-1
  • Chen, Q. M., Fu, M. R., Yue, F. L., & Cheng, Y. Y. (2015b). Effect of superfine grinding on physicochemical properties, antioxidant activity and phenolic content of red rice (Oryza sativa L.). Food and Nutrition Sciences, 6(14), 1277–1284. https://doi.org/10.4236/fns.2015.614133
  • Chen, H., Weiss, J., & Shahidi, F. (2006). Nanotechnology in nutraceuticals and functional foods. Food Technology (Chicago), 60(3), 30–36.
  • Chen, T., Zhang, M., Bhandari, B., & Yang, Z. (2018). Micronization and nanosizing of particles for an enhanced quality of food: A review. Critical Reviews in Food Science and Nutrition, 58(6), 993–1001. https://doi.org/10.1080/10408398.2016.1236238
  • Chen, Y., Zhang, B. C., Sun, Y. H., Zhang, J. G., Sun, H. J., & Wei, Z. J. (2015a). Physicochemical properties and adsorption of cholesterol by okra (Abelmoschus esculentus) powder. Food & Function, 6(12), 3728–3736. https://doi.org/10.1039/C5FO00600G
  • Chew, N. Y., & Chan, H. K. (2002). Effect of powder polydispersity on aerosol generation. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne des Sciences Pharmaceutiques, 5(2), 162–168.
  • Chun-Yu, Y., Di, F., Ping, W., & Yan, M. (2004). Preparation technology of ultra-fine powders of auricularia auricular. Journal of Forestry Research, 15(2), 150–152. https://doi.org/10.1007/BF02856752
  • Cui, L., Li, J., Wang, Z., Wei, X., Xia, W., & Zhou, W. Effects of superfine grinding on the structure, bioactive components and antioxidant activity of pineapple leaf fiber. (2019). IOP Conference Series: Materials Science & Engineering, 611(1), 12052. https://doi.org/10.1088/1757-899X/611/1/012052
  • de la Hera, E., Martinez, M., & Gómez, M. (2013). Influence of flour particle size on quality of gluten-free rice bread. LWT-Food Science and Technology, 54(1), 199–206. https://doi.org/10.1016/j.lwt.2013.04.019
  • Eke-Ejiofor, J. N., Ojimadu, A. E., Wordu, G. O., & Ofoedu, C. E. (2021). Functional properties of complementary food from millet (Pennisetum glaucum), African yam bean (Sphenostylis stenocarpa), and jackfruit (Artocarpus heterophyllus) flour blends: A comparative study. Asian Food Science Journal, 20(9), 45–62. https://doi.org/10.9734/AFSJ/2021/v20i930342
  • Gao, W., Chen, F., Wang, X., & Meng, Q. (2020a). Recent advances in processing food powders by using superfine grinding techniques: A review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2222–2255. https://doi.org/10.1111/1541-4337.12580
  • Gao, W., Chen, F., Zhang, L., & Meng, Q. (2020b). Effects of superfine grinding on asparagus pomace. Part I: Changes on physicochemical and functional properties. Journal of Food Science, 85(6), 1827–1833. https://doi.org/10.1111/1750-3841.15168
  • Gao, Y., Zhang, M., Chen, G., & Wang, Y. (2013). Effect of micronization on physicochemical properties of small yellow croaker (Pseudosciaena polyactis) skull. Advanced Powder Technology, 24(6), 932–938. https://doi.org/10.1016/j.apt.2013.01.009
  • Gao, X., Zhu, D., Liu, Y., Zha, L., Chen, D., & Guo, H. (2019). Physicochemical properties and anthocyanin bioaccessibility of downy rose-myrtle powder prepared by superfine grinding. International Journal of Food Properties, 22(1), 2022–2032. https://doi.org/10.1080/10942912.2019.1702999
  • Ghodki, B. M., & Goswami, T. K. (2016). Effect of grinding temperatures on particle and physicochemical characteristics of black pepper powder. Powder Technology, 299, 168–177. https://doi.org/10.1016/j.powtec.2016.05.042
  • Gong, P., Huang, Z., Guo, Y., Wang, X., Yue, S., Yang, W., Chen, F., Chang, X., & Chen, L. (2022). The effect of superfine grinding on physicochemical properties of three kinds of mushroom powder. Journal of Food Science, 87(8), 3528–3541. https://doi.org/10.1111/1750-3841.16239
  • Guo, X., Dai, T., Chen, M., Deng, L., Chen, J., & Liu, C. (2022). Steam bread made by superfine purple corn flour: Texture characteristics and in vitro starch digestibility. LWT, 169, 113967. https://doi.org/10.1016/j.lwt.2022.113967
  • He, S., Li, J., He, Q., Jian, H., Zhang, Y., Wang, J., & Sun, H. (2018). Physicochemical and antioxidant properties of hard white winter wheat (Triticum aestivm L.) bran superfine powder produced by eccentric vibratory milling. Powder Technology, 325, 126–133. https://doi.org/10.1016/j.powtec.2017.10.054
  • Hemery, Y., Chaurand, M., Holopainen, U., Lampi, A. M., Lehtinen, P., Piironen, V., Sadoudi, A., & Rouau, X. (2011). Potential of dry fractionation of wheat bran for the development of food ingredients, part I: Influence of ultra-fine grinding. Journal of Cereal Science, 53(1), 1–8. https://doi.org/10.1016/j.jcs.2010.09.005
  • Hou, D., Duan, W., Xue, Y., Yousaf, L., Hu, J., & Shen, Q. (2020). Effects of superfine grinding and extrusion on dough mixing properties and noodle quality of black soybean flour. Journal of Food Measurement and Characterization, 14(1), 125–134. https://doi.org/10.1007/s11694-019-00274-6
  • Hou, S., Zhao, Q. S., Chang, S., Li, H., Zha, S. H., Li, Q., Weng, D., Qin, Q., Zhao, B., & Zhang, J. (2023). Effect of superfine grinding on the physico‐chemical and antioxidant properties of cistanche deserticola powders. Journal of Food Process Engineering, 46(5), e14319. https://doi.org/10.1111/jfpe.14319
  • Huang, X., Dou, J. Y., Li, D., & Wang, L. J. (2018). Effects of superfine grinding on properties of sugar beet pulp powders. LWT, 87, 203–209. https://doi.org/10.1016/j.lwt.2017.08.067
  • Huang, X., Liang, K. H., Liu, Q., Qiu, J., Wang, J., & Zhu, H. (2020). Superfine grinding affects physicochemical, thermal and structural properties of moringa oleifera leaf powders. Industrial Crops and Products, 151, 112472. https://doi.org/10.1016/j.indcrop.2020.112472
  • Huang, Y. L., Sheu, F., Lee, M. H., & Chau, C. F. (2008). Effects of particle size reduction of insoluble fibres by micron technology on various caecal and faecal indices. Journal of the Science of Food and Agriculture, 88(3), 435–441. https://doi.org/10.1002/jsfa.3104
  • Hu, J., Chen, Y., & Ni, D. (2012). Effect of superfine grinding on quality and antioxidant property of fine green tea powders. LWT-Food Science and Technology, 45(1), 8–12. https://doi.org/10.1016/j.lwt.2011.08.002
  • Hu, J., Ma, L., Liu, X., Li, H., Zhang, M., Jiang, Z., & Hou, J. (2022). Superfine grinding pretreatment enhances emulsifying, gel properties and in vitro digestibility of laccase-treated α-lactalbumin. Lwt, 157, 113082. https://doi.org/10.1016/j.lwt.2022.113082
  • Ibeabuchi, J. C., Okafor, D. C., Peter–Ikechukwu, A., Agunwa, I. M., Eluchie, C. N., Ofoedu, C. E., & Nwatu, N. P. (2017). Comparative study on the proximate composition, functional and sensory properties of three varieties of beans Phaseolus lunatus. Phaseolus Vulgaris and Vigna Umbellata, International Journal of Advancement in Engineering Technology, Management and Applied Science (IJAETMAS), 5(1), 1–23. https://doi.org/10.9734/cjast/2019/v33i430090
  • Ihediohanma, N. C., Ofoedu, C. E., Ojimba, N. C., Okafor, D. C., & Adedokun, A. O. (2014). Comparative Effect of milling methods on the proximate composition and functional properties of cowpea (Vigna unguiculata). International Journal of Life Sciences, 3(4), 170–177.
  • Jakobek, L., & Matić, P. (2019). Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility. Trends in Food Science & Technology, 83, 235–247. https://doi.org/10.1016/j.tifs.2018.11.024
  • Jin, S., & Chen, H. (2006). Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochemical engineering journal, 30(3), 225–230. https://doi.org/10.1016/j.bej.2006.05.002
  • Jin, X., Lin, S., Gao, J., Wang, Y., Ying, J., Dong, Z., & Zhou, W. (2020). How manipulation of wheat bran by superfine-grinding affects a wide spectrum of dough rheological properties. Journal of Cereal Science, 96, 103081. https://doi.org/10.1016/j.jcs.2020.103081
  • Lee, Y. T., Shim, M. J., Goh, H. K., Mok, C., & Puligundla, P. (2019). Effect of jet milling on the physicochemical properties, pasting properties, and in vitro starch digestibility of germinated brown rice flour. Food Chemistry, 282, 164–168. https://doi.org/10.1016/j.foodchem.2018.07.179
  • Li, G., Guo, W., Gao, X., Wang, Y., & Sun, S. (2020). Effect of superfine grinding on physicochemical and antioxidant properties of soybean residue powder. Food Science & Nutrition, 8(2), 1208–1214. https://doi.org/10.1002/fsn3.1409
  • Li, Y., Li, M., Wang, L., & Li, Z. (2022). Effect of particle size on the release behavior and functional properties of wheat bran phenolic compounds during in vitro gastrointestinal digestion. Food Chemistry, 367, 130751. https://doi.org/10.1016/j.foodchem.2021.130751
  • Lin, S., Jin, X., Gao, J., Qiu, Z., Ying, J., Wang, Y., Dong, Z., & Zhou, W. (2021). Impact of wheat bran micronization on dough properties and bread quality: Part I–bran functionality and dough properties. Food Chemistry, 353, 129407. https://doi.org/10.1016/j.foodchem.2021.129407
  • Liu, T. Y., Ma, Y., Yu, S. F., Shi, J., & Xue, S. (2011). The effect of ball milling treatment on structure and porosity of maize starch granule. Innovative Food Science & Emerging Technologies, 12(4), 586–593. https://doi.org/10.1016/j.ifset.2011.06.009
  • Liu, R., Zhu, T., Li, J., Wu, T., Li, Q., Meng, Y., Cao, Q., & Zhang, M. (2016). Physicochemical and antioxidative properties of superfine-ground oat bran polysaccharides. Food Science and Technology Research, 22(1), 101–109. https://doi.org/10.3136/fstr.22.101
  • Luhovyy, B. L., Hamilton, A., Kathirvel, P., & Mustafaalsaafin, H. (2017). The effect of navy bean flour particle size on carbohydrate digestion rate measured in vitro. Cereal Foods World, 62(5), 208–213. https://doi.org/10.1094/CFW-62-5-0208
  • McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330. https://doi.org/10.1080/10408398.2011.559558
  • Memon, A. A., Mahar, I., Memon, R., Soomro, S., Harnly, J., Memon, N., Bhangar, M. I., & Luthria, D. L. (2020). Impact of flour particle size on nutrient and phenolic acid composition of commercial wheat varieties. Journal of Food Composition and Analysis, 86, 103358. https://doi.org/10.1016/j.jfca.2019.103358
  • Mena, E. H., Liu, T., Liao, X., Olajide, T. M., & Huang, J. (2016). Effect of superfine grinding on the phytochemicals and antioxidant activities of mulberry leaves. Science, 4(3), 138–146. https://doi.org/10.11648/j.sjph.20160403.11
  • Meng, Q., Chen, F., Xiao, T., & Zhang, L. (2019). Superfine grinding of dendrobium officinale: The finer the better? International Journal of Food Science & Technology, 54(6), 2199–2208. https://doi.org/10.1111/ijfs.14129
  • Meng, Q., Fan, H., Xu, D., Aboshora, W., Tang, Y., Xiao, T., & Zhang, L. (2017). Superfine grinding improves the bioaccessibility and antioxidant properties of dendrobium officinale powders. International Journal of Food Science & Technology, 52(6), 1440–1451. https://doi.org/10.1111/ijfs.13405
  • Mert, I. D. (2020). The applications of microfluidization in cereals and cereal-based products: An overview. Critical Reviews in Food Science and Nutrition, 60(6), 1007–1024. https://doi.org/10.1080/10408398.2018.1555134
  • Min, C., Baoguo, L., Xianzhou, C., & Mingxu, W. (2021). Effect of grinding medium characteristics of vibration mill on superfine grinding of wheat bran. Transaction of the Chinese Society of Agricultural Engineering, 37(23), 256–263. https://doi.org/10.11975/j.issn.1002-6819.2021.23.030
  • Ming, J., Chen, L., Hong, H., & Li, J. (2015). Effect of superfine grinding on the physico‐chemical, morphological and thermogravimetric properties of lentinus edodes mushroom powders. Journal of the Science of Food and Agriculture, 95(12), 2431–2437. https://doi.org/10.1002/jsfa.6967
  • Muttakin, S., Kim, M. S., & Lee, D. (2015). Tailoring physicochemical and sensorial properties of defatted soybean flour using jet-milling technology. Food Chemistry, 187, 106–111. https://doi.org/10.1016/j.foodchem.2015.04.104
  • Niu, M., Hou, G. G., Wang, L., & Chen, Z. (2014). Effects of superfine grinding on the quality characteristics of whole-wheat flour and its raw noodle product. Journal of Cereal Science, 60(2), 382–388. https://doi.org/10.1016/j.jcs.2014.05.007
  • Ofoedu, C. E., Osuji, C. M., Omeire, G. C., Ojukwu, M., Okpala, C. O. R., & Korzeniowska, M. (2020). Functional properties of syrup from malted and unmalted rice of different varieties: A comparative study. Journal of Food Science, 85(10), 3081–3093. https://doi.org/10.1111/1750-3841.15446
  • Ofoedu, C. E., You, L., Osuji, C. M., Iwouno, J. O., Kabuo, N. O., Ojukwu, M., Agunwah, I. M., Chacha, J. S., Muobike, O. P., Agunbiade, A. O., Sardo, G., Bono, G., Okpala, C. O. R., & Korzeniowksa, M. (2021). Hydrogen peroxide effects on natural-sourced polysaccharides: Free radical formation/production, degradation process, and reaction mechanism-A critical synopsis. Foods, 10(4), 699. https://doi.org/10.3390/foods10040699
  • Prasedya, E. S., Frediansyah, A., Martyasari, N. W. R., Ilhami, B. K., Abidin, A. S., Padmi, H. F., Juanssilfero, A. B., Widyastuti, S., & Sunarwidhi, A. L. (2021). Effect of particle size on phytochemical composition and antioxidant properties of sargassum cristaefolium ethanol extract. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-95769-y
  • Qiu, L., Zhang, M., Xu, B., & Wang, B. (2022). Effects of superfine grinding on the physicochemical properties, antioxidant capacity, and hygroscopicity of Rosa rugosa cv. Plena powders. Journal of the Science of Food and Agriculture, 102(10), 4192–4199. https://doi.org/10.1002/jsfa.11768
  • Rajkhowa, R., Wang, L., & Wang, X. (2008). Ultra-fine silk powder preparation through rotary and ball milling. Powder Technology, 185(1), 87–95. https://doi.org/10.1016/j.powtec.2008.01.005
  • Ramachandraiah, K., & Chin, K. B. (2016). Evaluation of ball-milling time on the physicochemical and antioxidant properties of persimmon by-products powder. Innovative Food Science & Emerging Technologies, 37, 115–124. https://doi.org/10.1016/j.ifset.2016.08.005
  • Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R., & Elez-Martínez, P. (2018). Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 58(15), 2531–2548. https://doi.org/10.1080/10408398.2017.1331200
  • Rizlan, Z., & Mamat, O. (2014). Process parameters optimization of silica sand nanoparticles production using low speed ball milling method. Chinese Journal of Engineering, 2014, 1–4. https://doi.org/10.1155/2014/802459
  • Rosa, N. N., Barron, C., Gaiani, C., Dufour, C., & Micard, V. (2013). Ultra-fine grinding increases the antioxidant capacity of wheat bran. Journal of Cereal Science, 57(1), 84–90. https://doi.org/10.1016/j.jcs.2012.10.002
  • Sheng, K., Qu, H., Liu, C., Yan, L., You, J., Shui, S., & Zheng, L. (2017). A comparative assess of high hydrostatic pressure and superfine grinding on physicochemical and antioxidant properties of grape pomace. International Journal of Food Science & Technology, 52(9), 2106–2114. https://doi.org/10.1111/ijfs.13489
  • Shu, Y., Li, J., Yang, X., Dong, X., & Wang, X. (2019). Effect of particle size on the bioaccessibility of polyphenols and polysaccharides in green tea powder and its antioxidant activity after simulated human digestion. Journal of Food Science and Technology, 56(3), 1127–1133. https://doi.org/10.1007/s13197-019-03573-4
  • Song, L. L., Fan, B. Y., Jiang, S. Z., & Zhang, D. L. (2002). Probe into characteristics of taraxacum mongolicum ultramicro-power. Zhongguo Zhong Yao Za Zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica, 27(1), 12–15.
  • Song, L., Song, L., Su, H., Ma, F., & Zhang, B. (2022). Superfine grinding affects particle size, chemical ingredients, and physicochemical properties of sprouting quinoa. Cereal Chemistry, 99(3), 520–529. https://doi.org/10.1002/cche.10515
  • Sun, C., Liu, R., Ni, K., Wu, T., Luo, X., Liang, B., & Zhang, M. (2016). Reduction of particle size based on superfine grinding: Effects on structure, rheological and gelling properties of whey protein concentrate. Journal of Food Engineering, 186, 69–76. https://doi.org/10.1016/j.jfoodeng.2016.03.002
  • Sun, C., Wu, T., Liu, R., Liang, B., Tian, Z., Zhang, E., & Zhang, M. (2015). Effects of superfine grinding and microparticulation on the surface hydrophobicity of whey protein concentrate and its relation to emulsions stability. Food Hydrocolloids, 51, 512–518. https://doi.org/10.1016/j.foodhyd.2015.05.027
  • Sun, X., Zhang, Y., Li, J., Aslam, N., Sun, H., Zhao, J., Wu, Z., & He, S. (2019). Effects of particle size on physicochemical and functional properties of superfine black kidney bean (Phaseolus vulgaris L.) powder. PeerJ, 7, e6369. https://doi.org/10.7717/peerj.6369
  • Waliullah, M. H., Mu, T., Ma, M., & Chen, J. (2021). Effects of particle size on structural, physicochemical, and functional properties of potato residue from starch isolation and quality characteristics of residue-based starch noodles. Food Science and Technology International, 27(5), 392–403. https://doi.org/10.1177/1082013220954606
  • Wang, X., Kristo, E., & LaPointe, G. (2019). The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocolloids, 91, 83–91. https://doi.org/10.1016/j.foodhyd.2019.01.004
  • Wang, H., Tao, M., Zhang, H., Cheng, S., Zhang, L., & Liu, Z. (2020). The mechanism on decreasing the microbiological contamination of superfine green tea powder by ball milling. LWT, 134, 109966. https://doi.org/10.1016/j.lwt.2020.109966
  • Wu, Z., Ameer, K., & Jiang, G. (2021). Effects of superfine grinding on the physicochemical properties and antioxidant activities of sanchi (Panax notoginseng) flower powders. Journal of Food Science and Technology, 58(1), 62–73. https://doi.org/10.1007/s13197-020-04514-2
  • Wu, G. C., Zhang, M., Wang, Y. Q., Mothibe, K. J., & Chen, W. X. (2012). Production of silver carp bone powder using superfine grinding technology: Suitable production parameters and its properties. Journal of Food Engineering, 109(4), 730–735. https://doi.org/10.1016/j.jfoodeng.2011.11.013
  • Xiao, W., Zhang, Y., Fan, C., & Han, L. (2017). A method for producing superfine black tea powder with enhanced infusion and dispersion property. Food Chemistry, 214, 242–247. https://doi.org/10.1016/j.foodchem.2016.07.096
  • Xu, Q., Huang, R., Yang, P., Wang, L., Xing, Y., Liu, H., Wu, L., Che, Z., & Zhang, P. (2021). Effect of different superfine grinding technologies on the physicochemical and antioxidant properties of tartary buckwheat bran powder. RSC Advances, 11(49), 30898–30910. https://doi.org/10.1039/D1RA05093A
  • Xu, X., Xu, Y., Wang, N., & Zhou, Y. (2018). Effects of superfine grinding of bran on the properties of dough and qualities of steamed bread. Journal of Cereal Science, 81, 76–82. https://doi.org/10.1016/j.jcs.2018.04.002
  • Yang, D., Qu, M., Tianmei, Z., & Lihan, F. (2016). Research on production technology of low-temperature superfine grinding jujube. Advance Journal of Food Science & Technology, 12(6), 331–336. https://doi.org/10.19026/ajfst.12.2969
  • Yang, L., Wang, S., Zhang, H., Du, C., Li, S., & Yang, J. (2022). Effects of black soybean powder particle size on the characteristics of mixed powder and wheat flour dough. LWT, 167, 113834. https://doi.org/10.1016/j.lwt.2022.113834
  • Yan, T., Liu, R., Shi, L., Wang, Y., Meng, X., & Shen, Y. (2023). Superfine grinding improves the physicochemical, sensory and functional characteristics of hanfu apple pomace. International Journal of Food Science & Technology, 58(4), 2077–2084. https://doi.org/10.1111/ijfs.15934
  • Yu, D., Chen, J., Ma, J., Sun, H., Yuan, Y., Ju, Q., Teng, Y., Yang, M., Li, W., Fujita, K., Tatsumi, E., & Luan, G. (2018). Effects of different milling methods on physicochemical properties of common buckwheat flour. LWT, 92, 220–226. https://doi.org/10.1016/j.lwt.2018.02.033
  • Yu, S., Wu, Y., Li, Z., Wang, C., Zhang, D., & Wang, L. (2023). Effect of different milling methods on physicochemical and functional properties of mung bean flour. Frontiers in Nutrition, 10, 1117385. https://doi.org/10.3389/fnut.2023.1117385
  • Zhang, Z. Q., Chen, S. C., Wang, Q. L., Liu, C. Q., Xiao, J. H., & Huang, D. W. (2023). Effects of traditional grinding and superfine grinding technologies on the properties and volatile components of protaetia brevitarsis larvae powder. LWT, 173, 114307. https://doi.org/10.1016/j.lwt.2022.114307
  • Zhang, J., Dong, Y., Nisar, T., Fang, Z., Wang, Z. C., & Guo, Y. (2020). Effect of superfine-grinding on the physicochemical and antioxidant properties of Lycium ruthenicum Murray powders. Powder Technology, 372, 68–75. https://doi.org/10.1016/j.powtec.2020.05.097
  • Zhang, X., & Haque, Z. Z. (2015). Generation and stabilization of whey-based monodisperse nanoemulsions using ultra-high-pressure homogenization and small amphipathic co-emulsifier combinations. Journal of Agricultural & Food Chemistry, 63(45), 10070–10077. https://doi.org/10.1021/acs.jafc.5b03889
  • Zhang, L. H., & Li, S. F. (2009). Effects of micronization on properties of Chaenomeles sinensis (Thouin) Koehne fruit powder. Innovative Food Science & Emerging Technologies, 10(4), 633–637. https://doi.org/10.1016/j.ifset.2009.05.010
  • Zhang, M., Wang, F., Liu, R., Tang, X., Zhang, Q., & Zhang, Z. (2014). Effects of superfine grinding on physicochemical and antioxidant properties of Lycium barbarum polysaccharides. LWT-Food Science and Technology, 58(2), 594–601. https://doi.org/10.1016/j.lwt.2014.04.020
  • Zhang, T., Xiao, S.-Y., Ding, Z.-H., & Song, Y.-T. (2021). Effects of superfine grinding on physicochemical properties and morphological structure of coix seed powders. Journal of Cereal Science, 102, 103361. https://doi.org/10.1016/j.jcs.2021.103361
  • Zhang, J., Yu, Y., & Xu, G. (2010). Technology of superfine grinding and its application in food industry. Journal of Agricultural Science, 31(1), 51–54.
  • Zhang, M., Zhang, C. J., & Shrestha, S. (2005). Study on the preparation technology of superfine ground powder of agrocybe chaxingu huang. Journal of Food Engineering, 67(3), 333–337. https://doi.org/10.1016/j.jfoodeng.2004.04.036
  • Zhao, S., Baik, O. D., Choi, Y. J., & Kim, S. M. (2014). Pretreatments for the efficient extraction of bioactive compounds from plant-based biomaterials. Critical reviews in food science and nutrition, 54(10), 1283–1297. https://doi.org/10.1080/10408398.2011.632698
  • Zhao, Z., Dai, Z., Jiang, X., Yu, L., Hu, M., Peng, J., & Zhou, F. (2023). Influence and optimization of long-time superfine grinding on the physicochemical features of green tea powder. Journal of Food Composition and Analysis, 117, 105124. https://doi.org/10.1016/j.jfca.2022.105124
  • Zhao, X., Du, F., Zhu, Q., Qiu, D., Yin, W., & Ao, Q. (2010). Effect of superfine pulverization on properties of astragalus membranaceus powder. Powder Technology, 203(3), 620–625. https://doi.org/10.1016/j.powtec.2010.06.029
  • Zhao, X., Liu, H., Zhang, X., & Ao, Q. (2018b). Effect of pressure grinding technology on the physicochemical and antioxidant properties of tremella aurantialba powder. Journal of Food Processing and Preservation, 42(12), e13833. https://doi.org/10.1111/jfpp.13833
  • Zhao, X., Yang, Z., Gai, G., & Yang, Y. (2009). Effect of superfine grinding on properties of ginger powder. Journal of Food Engineering, 91(2), 217–222. https://doi.org/10.1016/j.jfoodeng.2008.08.024
  • Zhao, G., Zhang, R., Dong, L., Huang, F., Tang, X., Wei, Z., & Zhang, M. (2018a). Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT, 87, 450–456. https://doi.org/10.1016/j.lwt.2017.09.016
  • Zhao, X., Zhu, H., Zhang, G., & Tang, W. (2015). Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders. Powder Technology, 286, 838–844. https://doi.org/10.1016/j.powtec.2015.09.025
  • Zhong, C., Zu, Y., Zhao, X., Li, Y., Ge, Y., Wu, W., Zhang, Y., Li, Y., & Guo, D. (2016). Effect of superfine grinding on physicochemical and antioxidant properties of pomegranate peel. International Journal of Food Science & Technology, 51(1), 212–221. https://doi.org/10.1111/ijfs.12982
  • Zhu, Y., Bai, J., Qian, X., Yang, X., Zhou, X., Zhao, Y., Dong, Y., & Xiao, X. (2022). Effect of superfine grinding on physical properties, bioaccessibility, and anti‐obesity activities of bitter melon powders. Journal of the Science of Food and Agriculture, 102(11), 4473–4483. https://doi.org/10.1002/jsfa.11802
  • Zhu, Y., Dong, Y., Qian, X., Cui, F., Guo, Q., Zhou, X., Wang, Y., Zhang, Y., & Xiong, Z. (2011). Effect of superfine grinding on antidiabetic activity of bitter melon powder. International Journal of Molecular Sciences, 13(12), 14203–14218. https://doi.org/10.3390/ijms131114203
  • Zhu, F. M., Du, B., & Li, J. (2014). Effect of ultrafine grinding on physicochemical and antioxidant properties of dietary fiber from wine grape pomace. Food Science and Technology International, 20(1), 55–62. https://doi.org/10.1177/1082013212469619
  • Zhu, F., Du, B., & Xu, B. (2015). Superfine grinding improves functional properties and antioxidant capacities of bran dietary fibre from qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China. Journal of Cereal Science, 65, 43–47. https://doi.org/10.1016/j.jcs.2015.06.006
  • Zhu, K., Huang, S., Peng, W., Qian, H., & Zhou, H. (2010). Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Research International, 43(4), 943–948. https://doi.org/10.1016/j.foodres.2010.01.005