408
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dihydromyricetin promotes LDL metabolism in HepG2 cells through the PCSK9/LDLR pathway

, , , , , , , , & show all
Pages 554-560 | Received 27 Feb 2023, Accepted 21 Aug 2023, Published online: 15 Sep 2023

References

  • Chen, H.-C., Chen, P.-Y., Wu, M.-J., Tai, M.-H., & Yen, J.-H. (2016). Tanshinone IIA modulates low density lipoprotein uptake via down-regulation of PCSK9 gene expression in HepG2 cells. PloS One, 11(9), e0162414. https://doi.org/10.1371/journal.pone.0162414
  • Chen, S., Zhao, X., Wan, J., Ran, L., & Mi, M. (2015). Dihydromyricetin improves glucose and lipid metabolism and exerts anti inflammatory effects in nonalcoholic fatty liver disease: A randomized controlled trial. Pharmacological research: The official journal of the Italian Pharmacological Society, 99, 74–81. https://doi.org/10.1016/j.phrs.2015.05.009
  • Yang, H. X., Zhang, M., Long, S. Y., Tuo, Q. H., Tian, Y., Chen, J. X., Zhang, C. P., & Liao, D. F. (2020). Cholesterol in LDL receptor recycling and degradation. Clinica Chimica Acta, 500, 81–86. https://doi.org/10.1016/j.cca.2019.09.022
  • Cui, C.-J., Jin, J-L., Guo, L.-N., Sun, J., Wu, N.-Q., Guo, Y.-L., Liu, G., Dong, Q., Li, J.-J. (2020). Beneficial impact of epigallocatechin gallate on LDL-c through PCSK9/LDLR pathway by blocking HNF1α and activating FoxO3a. Journal of Translational Medicine, 18(1), 195. https://doi.org/10.1186/s12967-020-02362-4
  • Huang, Y.-W., Zhang, M., Wang, L.-T., Nie, Y., Yang, J.-B., Meng, W.-L., Wang, X.-J., Sheng, J. (2022). 20(S)-protopanaxadiol decreases atherosclerosis in ApoE KO mice by increasing the levels of LDLR and inhibiting its binding with PCSK9. Food & Function, 13(13), 7020–7028. https://doi.org/10.1039/D2FO00392A
  • Jeong, H. J., Lee, H.-S., Kim, K.-S., Kim, Y.-K., Yoon, D., & Park, S. W. (2008). Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. Journal of Lipid Research, 49(2), 399–409. https://doi.org/10.1194/jlr.M700443-JLR200
  • Kanter, J. E., Kramer, F., Barnhart, S., Averill, M. M., Vivekanandan-Giri, A., Vickery, T., Li, L. O., Becker, L., Yuan, W., Chait, A., Braun, K. R., Potter-Perigo, S., Sanda, S., Wight, T. N., Pennathur, S., Serhan, C. N., Heinecke, J. W., Coleman, R. A., & Bornfeldt, K. E. (2012). Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-coa synthetase 1. Proceedings of the National Academy of Sciences, 109(12), 715–724. https://doi.org/10.1073/pnas.1111600109
  • Le, L., Jiang, B., Wan, W., Zhai, W., Xu, L., Hu, K., & Xiao, P. (2016). Metabolomics reveals the protective of Dihydromyricetin on glucose homeostasis by enhancing insulin sensitivity. Scientific Reports, 6(1), 36184. https://doi.org/10.1038/srep36184
  • Liao, W., Ning, Z., Ma, L., Yin, X., Wei, Q., Yuan, E., Yang, J., & Ren, J. (2014). Recrystallization of dihydromyricetin from Ampelopsis grossedentata and its anti-oxidant activity evaluation. Rejuvenation Research, 17(5), 422–429. https://doi.org/10.1089/rej.2014.1555
  • Li, H., Dong, B., Park, S. W., Lee, H.-S., Chen, W., & Liu, J. (2009). Hepatocyte nuclear factor 1α plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. Journal of Biological Chemistry, 284(42), 28885–28895. https://doi.org/10.1074/jbc.M109.052407
  • Li, H., Li, Q., Liu, Z., Chen, K., Chen, Z., Wu, Q., & Wu, L. (2017). The versatile effects of Dihydromyricetin in health. Evidence-Based Complementary and Alternative Medicine, 9, 1–10. https://doi.org/10.1155/2017/1053617
  • Li, Z., & Liu, Q. (2018). Hepatitis C virus regulates proprotein convertase subtilisin/kexin type 9 promoter activity. Biochemical & Biophysical Research Communications, 496(4), 1229–1235. https://doi.org/10.1016/j.bbrc.2018.01.176
  • Li, H.-H., Li, J., Zhang, X.-J., Li, J.-M., Xi, C., Wang, W.-Q., Lu, Y.-L., & Xuan, L.-J. (2020). 23,24- Dihydrocucurbitacin B promotes lipid clearance by dual transcriptional regulation of LDLR and PCSK9. Acta pharmacologica Sinica, 41(3), 327–335. https://doi.org/10.1038/41401-019-0274-0
  • Lipari, M. T., Li, W., Moran, P., Kong-Beltran, M., Sai, T., Lai, J., Lin, S. J., Kolumam, G., Zavala-Solorio, J., Izrael-Tomasevic, A., Arnott, D., Wang, J., Peterson, A. S., & Kirchhofer, D. (2012). Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. Journal of Biological Chemistry, 287(52), 43482–43491. https://doi.org/10.1074/jbc.M112.380618
  • Liu, T. T., Zeng, Y., Tang, K., Chen, X., Zhang, W., & Xu, X. L. (2017). Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice. Atherosclerosis, 262, 39–50. https://doi.org/10.1016/j.atherosclerosis.2017.05.003
  • Luo, C., Wang, D., Huang, C. W., Song, Y., Ge Change, L., Zhang, X., Yang, L., Lu, J., Tu, X., Chen, C. Q., Yang, J., Xu, C., & Wang, Q. (2021). Feedback regulation of coronary artery disease susceptibility gene ADTRP and LDL receptors LDLR/CD36/LOX-1 in endothelia cell functions involved in atherosclerosis. Biochim Biophys Acta Mol Basis Dis, 1867(7), 166130. https://doi.org/10.1016/j.bbadis.2021.166130
  • Mady, F., & Shaker, M. (2017). Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. International Journal of Offshore and Polar Engineering, 12, 7405–7417. https://doi.org/10.2147/IJN.S147740
  • Maguire, M., Larsen, M. C., Vezina, C. M., Quadro, L., Kim, Y.-K., Tanumihardjo, S. A., & Jefcoate, C. R. (2020). Cyp1b1 directs Srebp-mediated cholesterol and retinoid synthesis in perinatal liver; Association with retinoic acid activity during fetal development. PloS One, 15(2), e0228436. https://doi.org/10.1371/journal.pone.0228436
  • Sun, Y., Liu, S., Yang, S., Chen, C., Yang, Y., Lin, M., Liu, C., Wang, W., Zhou, X., Ai, Q., Wang, W., & Chen, N. (2022). Mechanism of Dihydromyricetin on inflammatory diseases. Frontiers in Pharmacology, 12, 794563. https://doi.org/10.3389/fphar.2021.794563
  • Robinson, J. G., Nedergaard, B. S., Rogers, W. J., Fialkow, J., Neutel, J. M., Ramstad, D., Somaratne, R., Legg, J. C., Nelson, P., Scott, R., Wasserman, S. M., & Weiss, R. (2014). LAPLACE-2 investigators. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-c lowering in patients with hypercholesterolemia: The LAPLACE-2 randomized clinical trial. JAMA, 311(18), 1870–1882. https://doi.org/10.1001/jama.2014.4030
  • Seidah, N. G., Awan, Z., Chrétien, M., & Mbikay, M. (2014). Pcsk9: A key modulator of cardiovascular health. Circulation Research, 114(6), 1022–1036. https://doi.org/10.1161/CIRCRESAHA.114.301621
  • Song, K. H., Kim, Y. H., Im, A.-R., & Kim, Y. H. (2018). Black raspberry extract enhances LDL uptake in HepG2 cells by suppressing PCSK9 expression to Upregulate LDLR expression. Journal of Medicinal Food, 21(6), 560–567. https://doi.org/10.1089/jmf.2017.4069
  • Stephan, Z. F., & Yurachek, E. C. (2013). Rapid fluorometric assay of LDL receptor activity by DiI-labeled LDL. Comparative Study, 34(2), 325–330. https://doi.org/10.1016/S0022-2275(20)40759-X
  • Tao, R., Xiong, X., DePinho, R. A., Deng, C.-X., & Dong, X. C. (2013). FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)- cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. Journal of Biological Chemistry, 288(41), 29252–29259. https://doi.org/10.1074/jbc.M113.481473
  • Wang, X., Chen, X., Zhang, X., Su, C., Yang, M., He, W., Du, Y., Si, S., Wang, L., & Hong, B. (2020). A small-molecule inhibitor of PCSK9 transcription ameliorates atherosclerosis through the modulation of FoxO1/3 and HNF1α. EBioMedicine, 52, 102650. https://doi.org/10.1016/j.ebiom.2020.102650
  • Williams, J., Ensor, C., Gardner, S., Smith, R., & Lodder, R. (2015). BSN723T prevents atherosclerosis and weight gain in ApoE knockout mice fed a western diet. Webmedcentral, 6, WMC005034.
  • Wu, Y.-R., Li, L., Sun, X.-C., Wang, J., Ma, C.-Y., Zhang, Y., Qu, H.-L., Xu, R.-X., & Li, J.-J. (2021). Diallyl disulfide improves lipid metabolism by inhibiting PCSK9 expression and increasing LDL uptake via PI3K/Akt-SREBP2 pathway in HepG2 cells. Nutrition, Metabolism, and Cardiovascular Diseases, 31(1), 322–332. https://doi.org/10.1016/j.numecd.2020.08.012
  • Xiao, J., Bai, X., Liao, L., Zhou, M., Peng, J., Xiang, Q., Ren, Z., Wen, H., Jiang, Z., Tang, Z., Wang, M., & Liu, L. (2019). Hydrogen sulfide inhibits PCSK9 expression through the PI3K/Akt‑SREBP‑2 signaling pathway to influence lipid metabolism in HepG2 cells. International Journal of Molecular Medicine, 43, 2055–2063. https://doi.org/10.3892/ijmm.2019.4118
  • Xie, K., He, X., Chen, K., Sakao, K., & Hou, D.-X. (2020). Ameliorative effects and molecular mechanisms of vine tea on western diet-induced NAFLD. Food & Function, 11(7), 5976–5991. https://doi.org/10.1039/D0FO00795A
  • Yang, J. H., Bang, M. A., Jang, C. H., Jo, G. H., Jung, S. K., & Ki, S. H. (2015). Alginate oligosaccharide enhances LDL uptake via regulation of LDLR and PCSK9 expression. The Journal of Nutritional Biochemistry, 26(11), 1393–1400. https://doi.org/10.1016/j.jnutbio.2015.07.009
  • Zeng, Y., Peng, Y., Tang, K., Wang, Y. Q., Zhao, Z. Y., Wei, X. Y., & Xu, X. L. (2018). Dihydromyricetin ameliorates foam cell formation via LXRα-ABCA1/ABCG1- dependent cholesterol efflux in macrophages. Biomedicine & Pharmacotherapy, 101, 543–552. https://doi.org/10.1016/j.biopha.2018.02.124
  • Zhang, J., Chen, Y., Luo, H., Sun, L., Xu, M., Yu, J., Zhou, Q., Meng, G., & Change Yang, S. (2018). Recent update on the pharmacological effects and mechanisms of Dihydromyricetin. Frontiers in Pharmacology, 9, 1204. https://doi.org/10.3389/fphar.2018.01204
  • Zhu, J. P., Wei, X. Y., & Xu, X. L. (2018). Effect of dihydromyricetin on reverse cholesterol transport in high-fat feeding ApoE-/- mice. Chinese Pharmacological Bulletin, 34(11), 1610–1616. https://doi.org/10.3969/j.issn.10011978.2018.11.026