721
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of diamine oxidase-based biosensors for biogenic amines detection assembled onto functionalized SiO₂ substrates using aliphatic and aromatic di-aldehydes as crosslinkers

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 570-579 | Received 04 Jul 2023, Accepted 04 Sep 2023, Published online: 20 Sep 2023

References

  • Aissaoui, N., Bergaoui, L., Landoulsi, J., Lambert, J. F., & Boujday, S. (2012). Silane layers on silicon surfaces: Mechanism of interaction, stability, and influence on protein adsorption. Langmuir, 28(1), 656–665. https://doi.org/10.1021/la2036778
  • Aissaoui, N., Landoulsi, J., Bergaoui, L., Boujday, S., & Lambert, J.-F. (2013). Catalytic activity and thermostability of enzymes immobilized on silanized surface: Influence of the crosslinking agent. Enzyme and Microbial Technology, 52(6–7), 336–343. https://doi.org/10.1016/j.enzmictec.2013.02.018
  • Alcázar, R., Bueno, M., & Tiburcio, A. F. (2020). Polyamines: Small amines with large effects on plant abiotic stress tolerance. Cells, 9(11), 2373. NLM (Medline). https://doi.org/10.3390/cells9112373
  • Baranowska, M., Slota, A. J., Eravuchira, P. J., Alba, M., Formentin, P., Pallarès, J., Ferré-Borrull, J., & Marsal, L. F. (2015). Protein attachment to silane-functionalized porous silicon: A comparison of electrostatic and covalent attachment. Journal of Colloid and Interface Science, 452, 180–189. https://doi.org/10.1016/j.jcis.2015.04.022
  • Bover-Cid, S., Latorre-Moratalla, M. L. L., Veciana-Nogués, M. T. T., & Vidal-Carou, M. C. C. (2014). Processing contaminants: Biogenic amines. In Encyclopedia of food safety (Vol. 2, pp. 381–391). Elsevier. https://doi.org/10.1016/B978-0-12-378612-8.00216-X
  • Chang, A., Jeske, L., Ulbrich, S., Hofmann, J., Koblitz, J., Schomburg, I., Neumann-Schaal, M., Jahn, D., & Schomburg, D. (2021). BRENDA, the ELIXIR core data resource in 2021: New developments and updates. Nucleic Acids Research, 49(D1), D498–D508. https://doi.org/10.1093/nar/gkaa1025
  • Chung, Y., Ahn, Y., Christwardana, M., Kim, H., & Kwon, Y. (2016). Development of a glucose oxidase-based biocatalyst adopting both physical entrapment and crosslinking, and its use in biofuel cells. Nanoscale, 8(17), 9201–9210. https://doi.org/10.1039/C6NR00902F
  • Cobb, J. S., Zai-Rose, V., Correia, J. J., & Janorkar, A. V. (2020). FT-IR spectroscopic analysis of the secondary structures present during the desiccation induced aggregation of elastin-like polypeptide on silica. ACS Omega, 5(14), 8403–8413. https://doi.org/10.1021/acsomega.0c00271
  • Curulli, A. (2021). Electrochemical biosensors in food safety: Challenges and perspectives. Molecules, 26(10), 2940. https://doi.org/10.3390/molecules26102940
  • Dennington, R., Keith, T. A., & Millam, J. M. (2019). GaussView Version 6.
  • Dong, X.-X., Yang, J.-Y., Luo, L., Zhang, Y.-F., Mao, C., Sun, Y.-M., Lei, H.-T., Shen, Y.-D., Beier, R. C., & Xu, Z.-L. (2017). Portable amperometric immunosensor for histamine detection using Prussian blue-chitosan-gold nanoparticle nanocomposite films. Biosensors and Bioelectronics, 98, 305–309. https://doi.org/10.1016/j.bios.2017.07.014
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • El-Nour, K. M. A., Salam, E. T. A., Soliman, H. M., & Orabi, A. S. (2017). Gold nanoparticles as a direct and rapid sensor for sensitive analytical detection of biogenic amines. Nanoscale Research Letters, 12(1), 231. https://doi.org/10.1186/s11671-017-2014-z
  • Fopase, R., Paramasivam, S., Kale, P., & Paramasivan, B. (2020). Strategies, challenges and opportunities of enzyme immobilization on porous silicon for biosensing applications. Journal of Environmental Chemical Engineering, 8(5), 104266. https://doi.org/10.1016/j.jece.2020.104266
  • Fraudentali, I., Rodrigues-Pousada, R. A., Angelini, R., Ghuge, S. A., & Cona, A. (2021). Plant copper amine oxidases: Key players in hormone signaling leading to stress-induced phenotypic plasticity. International Journal of Molecular Sciences, 22(10), 5136. MDPI AG. https://doi.org/10.3390/ijms22105136
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., and Fox, D. J. (2016). Gaussian 16 revision C.01.
  • Gunda, N. S. K., Singh, M., Norman, L., Kaur, K., & Mitra, S. K. (2014). Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science, 305, 522–530. https://doi.org/10.1016/j.apsusc.2014.03.130
  • Heerthana, V. R., & Preetha, R. (2019). Biosensors: A potential tool for quality assurance and food safety pertaining to biogenic amines/volatile amines formation in aquaculture systems/products. Reviews in Aquaculture, 11(1), 220–233. Wiley-Blackwell. https://doi.org/10.1111/raq.12236
  • Hermanson, G. T. (2013). Silane coupling agents. In J. Audet &, and M. Preap (Eds.), Bioconjugate Techniques (3rd ed., pp. 535–548). Elsevier. https://doi.org/10.1016/B978-0-12-382239-0.00013-3
  • Hungerford, J. M. (2021). Histamine and Scombrotoxins. In Toxicon (Vol. 201, pp. 115–126). Elsevier Ltd. https://doi.org/10.1016/j.toxicon.2021.08.013
  • Kamathewatta, N. J. B., Nguyen, T. M., Lietz, R., Hughes, T., Taktak Karaca, B., Deay, D. O., Richter, M. L., Tamerler, C., & Berrie, C. L. (2021). Probing selective self-assembly of putrescine oxidase with controlled orientation using a genetically engineered peptide Tag. Langmuir, 37(24), 7536–7547. https://doi.org/10.1021/acs.langmuir.1c01033
  • Kettner, L., Seitl, I., & Fischer, L. (2022). Recent advances in the application of microbial diamine oxidases and other histamine-oxidizing enzymes. World Journal of Microbiology & Biotechnology, 38(12). https://doi.org/10.1007/s11274-022-03421-2
  • Kivirand, K., Sõmerik, H., Oldekop, M. L., Rebane, R., & Rinken, T. (2016). Effect of spermidine and its metabolites on the activity of pea seedlings diamine oxidase and the problems of biosensing of biogenic amines with this enzyme. Enzyme and Microbial Technology, 82, 133–137. https://doi.org/10.1016/j.enzmictec.2015.09.007
  • Kujawa, J., Głodek, M., Li, G., Al-Gharabli, S., Knozowska, K., & Kujawski, W. (2021). Highly effective enzymes immobilization on ceramics: Requirements for supports and enzymes. Science of the Total Environment, 801, 149647. https://doi.org/10.1016/j.scitotenv.2021.149647
  • Lebedeva, O. V., Ugarova, N. N., & Berezin, I. V. (1977). Kinetic study of o-dianisidine oxidation by hydrogen peroxide in the presence of horseradish peroxidase. Biokhimiia, 42(8), 1372–1379.
  • Lehane, L., & Olley, J. (2000). Histamine fish poisoning revisited. International Journal of Food Microbiology, 58(1–2), 1–37. https://doi.org/10.1016/S0168-1605(00)00296-8
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mostofi Sarkari, N., Doğan, Ö., Bat, E., Mohseni, M., & Ebrahimi, M. (2019). Assessing effects of (3-aminopropyl)trimethoxysilane self-assembled layers on surface characteristics of organosilane-grafted moisture-crosslinked polyethylene substrate: A comparative study between chemical vapor deposition and plasma-facilitated in situ grafting methods. Applied Surface Science, 497. https://doi.org/10.1016/j.apsusc.2019.143751
  • Munir, M. A., & Badri, K. H. (2020). The importance of derivatizing reagent in chromatography applications for biogenic amine detection in food and beverages. Journal of Analytical Methods in Chemistry, 2020, 1–14. https://doi.org/10.1155/2020/5814389
  • Nečas, D., & Klapetek, P. (2012). Gwyddion: An open-source software for SPM data analysis. Open Physics, 10(1). https://doi.org/10.2478/s11534-011-0096-2
  • O’Mahony, T. F., & Morris, M. A. (2021). Hydroxylation methods for mesoporous silica and their impact on surface functionalisation. Microporous and Mesoporous Materials, 317, 110989. https://doi.org/10.1016/j.micromeso.2021.110989
  • Pegg, A. E. (2013). Toxicity of polyamines and their metabolic products. Chemical Research in Toxicology, 26(12), 1782–1800. https://doi.org/10.1021/tx400316s
  • Rauscher-Gabernig, E., Grossgut, R., Bauer, F., & Paulsen, P. (2009). Assessment of alimentary histamine exposure of consumers in Austria and development of tolerable levels in typical foods. Food Control, 20(4), 423–429. https://doi.org/10.1016/j.foodcont.2008.07.011
  • Rogojerov, M., Jordanov, B., & Keresztury, G. (2000). Vibrational analysis of terephthalaldehyde from its IR and Raman spectra in isotropic and anisotropic solutions. Journal of Molecular Structure, 550–551, 455–465. https://doi.org/10.1016/S0022-2860(00)00401-4
  • Sadat, A., & Joye, I. J. (2020). Peak fitting applied to Fourier transform infrared and raman spectroscopic analysis of proteins. Applied Sciences, 10(17), 5918. https://doi.org/10.3390/app10175918
  • Sahu, R., Sooram, B., Sasidharan, S., Nag, N., Tripathi, T., & Saudagar, P. (2023). Applications of infrared spectroscopy to study proteins. In P. Saudagar & T. Tripathi (Eds.), Advanced spectroscopic methods to study biomolecular structure and dynamics (pp. 153–171 https://doi.org/10.1016/B978-0-323-99127-8.00005-2). Elsevier.
  • Shoji, M., Murakawa, T., Boero, M., Shigeta, Y., Hayashi, H., & Okajima, T. (2020). Unique protonation states of aspartate and topaquinone in the active site of copper amine oxidase. RSC Advances, 10(63), 38631–38639. https://doi.org/10.1039/d0ra06365g
  • Socrates, G. (2004). Infrared and Raman characteristic group frequencies (3rd ed.). John Wiley & Sons.
  • Sypabekova, M., Hagemann, A., Rho, D., & Kim, S. (2022). Review: 3-aminopropyltriethoxysilane (APTES) deposition methods on oxide surfaces in solution and vapor phases for biosensing applications. Biosensors, 13(1), 36. https://doi.org/10.3390/bios13010036
  • Tırıs, G., Sare Yanıkoğlu, R., Ceylan, B., Egeli, D., Kepekci Tekkeli, E., & Önal, A. (2023). A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chemistry, 398, 133919. https://doi.org/10.1016/j.foodchem.2022.133919
  • Torre, R., Costa-Rama, E., Nouws, H. P. A., & Delerue-Matos, C. (2020). Diamine oxidase-modified screen-printed electrode for the redox-mediated determination of histamine. Journal of Analytical Science and Technology, 11(1). https://doi.org/10.1186/s40543-020-0203-3
  • Tortolini, C., Favero, G., & Mazzei, F. (2018). Development of amine-oxidase-based biosensors for spermine and spermidine analysis. Polyamines: Methods and Protocols, 1694, 75–80. https://doi.org/10.1007/978-1-4939-7398-9_7
  • Vakal, S., Jalkanen, S., Dahlström, K. M., & Salminen, T. A. (2020). Human copper-containing amine oxidases in drug design and development. Molecules, 25(6), 1293. https://doi.org/10.3390/molecules25061293
  • Vashist, S. K., Lam, E., Hrapovic, S., Male, K. B., & Luong, J. H. T. (2014). Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chemical Reviews, 114(21), 11083–11130. https://doi.org/10.1021/cr5000943
  • Verma, N., Hooda, V., Gahlaut, A., Gothwal, A., & Hooda, V. (2020). Enzymatic biosensors for the quantification of biogenic amines: A literature update. Critical Reviews in Biotechnology, 40(1), 1–14. https://doi.org/10.1080/07388551.2019.1680600
  • Verma, N., Saini, R., Gahlaut, A., & Hooda, V. (2020). Stabilization and optimization of purified diamine oxidase by immobilization onto activated PVC membrane. Food Biotechnology, 34(4), 306–322. https://doi.org/10.1080/08905436.2020.1833912
  • Verma, N., Sisodiya, L., Gahlaut, A., Hooda, V., & Hooda, V. (2020). Novel approach using activated cellulose film for efficient immobilization of purified diamine oxidase to enhance enzyme performance and stability. Preparative Biochemistry and Biotechnology, 50(5), 468–476. https://doi.org/10.1080/10826068.2019.1709976
  • Wang, W., & Vaughn, M. W. (2008). Morphology and amine accessibility of (3-aminopropyl) triethoxysilane films on glass surfaces. Scanning, 30(2), 65–77. https://doi.org/10.1002/sca.20097
  • Wolfgong, W. J. (2016). Chemical analysis techniques for failure analysis: Part 1, common instrumental methods. In Handbook of materials failure analysis with case studies from the aerospace and automotive industries (pp. 279–307). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800950-5.00014-4
  • Zou, D., Zhao, Z., Li, L., Min, Y., Zhang, D., Ji, A., Jiang, C., Wei, X., & Wu, X. (2022). A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Comprehensive Reviews in Food Science and Food Safety, 21(3), 2820–2842. https://doi.org/10.1111/1541-4337.12963