624
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Untargeted metabolomics and quantitative label-free proteomics analysis of whole milk protein from Chinese native buffaloes

ORCID Icon, , , , , & ORCID Icon show all
Pages 634-645 | Received 24 Jan 2022, Accepted 28 Aug 2023, Published online: 31 Oct 2023

References

  • Alichanidis, E., Moatsou, G., & Polychroniadou, A. (2016). Chapter 5 – Composition and properties of non-cow milk and products. In E. Tsakalidou & K. Papadimitriou (Eds.), Non-bovine milk and milk products (pp. 81–116). Academic Press. Retrieved December 22, 2021, from https://doi.org/10.1016/C2014-0-04073-7
  • Arora, S., Sindhu, J. S., & Khetra, Y. (2022). Buffalo milk. In P. L. H. McSweeney & J. P. McNamara (Eds.), Encyclopedia of dairy sciences (3rd ed., pp. 784–796). Academic Press. Retrieved May 10, 2022, from https://doi.org/10.1016/B978-0-12-818766-1.00125-2
  • Arslan, A., Kaplan, M., Duman, H., Bayraktar, A., Ertürk, M., Henrick, B. M., Frese, S. A., & Karav, S. (2021). Bovine colostrum and its potential for human health and nutrition. Frontiers in Nutrition, 8, 651721. https://doi.org/10.3389/fnut.2021.651721
  • Behnsen, J., Zhi, H., Aron, A. T., Subramanian, V., Santus, W., Lee, M. H., Gerner, R. R., Petras, D., Liu, J. Z., Green, K. D., Price, S. L., Camacho, J., Hillman, H., Tjokrosurjo, J., Montaldo, N. P., Hoover, E. M., Treacy-Abarca, S., Gilston, B. A. Dorrestein, P. C. (2021). Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nature Communications, 12(1), 7016. https://doi.org/10.1038/s41467-021-27297-2
  • Bertoni, A., Álvarezmacías, A., Mota-Rojas, D., Dávalos, J. L., & Minervino, A. H. H. (2021). Dual-purpose water buffalo production systems in tropical Latin America: Bases for a sustainable model. Animals, 11(10), 2910. https://doi.org/10.3390/ani11102910
  • Bittante, G., Amalfitano, N., Bergamaschi, M., Patel, N., Haddi, M. L., Benabid, H., Pazzola, M., Vacca, G. M., Tagliapietra, F., & Schiavon, S. (2022). Composition and aptitude for cheese-making of milk from cows, buffaloes, goats, sheep, dromedary camels, and donkeys. Journal of Dairy Science, 105(3), 2132–2152. https://doi.org/10.3168/jds.2021-20961
  • Björmsjö, M., Hernell, O., Lönnerdal, B., & Berglund, S. K. (2022). Immunological effects of adding bovine lactoferrin and reducing iron in infant formula: A randomized controlled trial. Journal of Pediatric Gastroenterology and Nutrition, 74(3), e65–e72. https://doi.org/10.1097/MPG.0000000000003367
  • Buaban, S., Lengnudum, K., Boonkum, W., & Phakdeedindan, P. (2022). Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. Journal of Dairy Science, 105(1), 468–494. https://doi.org/10.3168/jds.2020-19826
  • Corcuff, J. B., Chardon, L., El Hajji Ridah, I., & Brossaud, J. (2017). Urinary sampling for 5HIAA and metanephrines determination: Revisiting the recommendations. Endocrine Connections, 6(6), R87–R98. https://doi.org/10.1530/EC-17-0071
  • Cosenza, G., Gallo, D., Auzino, B., Gaspa, G., & Pauciullo, A. (2021). Complete CSN1S2 characterization, novel allele identification and association with milk fatty acid composition in River buffalo. Frontiers in Genetics, 11, 622494. https://doi.org/10.3389/fgene.2020.622494
  • Cosenza, G., Pauciullo, A., Coletta, A., DiFrancia, A., Feligini, M., Gallo, D., DiBerardino, D., & Ramunno, L. (2011). Short communication: Translational efficiency of casein transcripts in mediterranean river buffalo. Journal of Dairy Science, 94(11), 5691–5694. https://doi.org/10.3168/jds.2010-4086
  • D’Ambrosio, C., Arena, S., Salzano, A. M., Renzone, G., Ledda, L., & Scaloni, A. (2008). A proteomics characterization of water buffalo milk fractions describing PTM of major species and the identification of minor components involved in nutrient delivery and defense against pathogens. Proteomics, 8(17), 3657–3666. https://doi.org/10.1002/pmic.200701148
  • Davoodi, S. H., Shahbazi, R., Esmaeili, S., Sohrabvandi, S., Mortazavian, A., Jazayeri, S., & Taslimi, A. (2016). Health-related aspects of milk proteins. Iranian Journal of Pharmaceutical Sciences, 15(3), 573–591. Retrieved December 22, 2021, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149046/pdf/ijpr-15-573.pdf
  • de Nicola, D., Vinale, F., Salzano, A., d’Errico, G., Vassetti, A., D’Onofrio, N., Balestrieri, M. L., & Neglia, G. (2020). Milk metabolomics reveals potential biomarkers for early prediction of pregnancy in buffaloes having undergone artificial insemination. Animals, 10(5), 758. https://doi.org/10.3390/ani10050758
  • de Oliveira, L. S. M., Alves, J. S., Bastos, M. S., da Cruz, V. A. R., Pinto, L. F. B., Tonhati, H., Costa, R. B., & de Camargo, G. M. F. (2021). Water buffaloes (Bubalus bubalis) only have A2A2 genotype for beta-casein. Tropical Animal Health and Production, 53(1), 145. https://doi.org/10.1007/s11250-021-02591-9
  • Du, C., Deng, T. X., Zhou, Y., Ghanem, N., & Hua, G. H. (2020). Bioinformatics analysis of candidate genes for milk production traits in water buffalo (Bubalus bubalis). Tropical Animal Health and Production, 52(1), 63–69. https://doi.org/10.1007/s11250-019-01984-1
  • Du, C., Deng, T., Zhou, Y., Ye, T., Zhou, Z., Zhang, S., Shao, B., Wei, P., Sun, H., Khan, F. A., Yang, L., & Hua, G. (2019). Systematic analyses for candidate genes of milk production traits in water buffalo (Bubalus bubalis). Animal Genetic, 50(3), 207–216. https://doi.org/10.1111/age.12739
  • El-Salam, M. H. A., & El-Shibiny, S. (2011). A comprehensive review on the composition and properties of buffalo milk. Dairy Science and Technology, 91(6), 663–699. https://doi.org/10.1007/s13594-011-0029-2
  • Faccia, M., D’Alessandro, A. G., Summer, A., & Hailu, Y. (2020). Milk products from minor dairy species: A review. Animals, 10(8), 1260. https://doi.org/10.3390/ani10081260
  • Fan, X., Zhang, Z., Qiu, L., Zhang, Y., & Miao, Y. (2019). Polymorphisms of the kappa casein (CSN3) gene and inference of its variants in water buffalo (Bubalus bubalis). Archives Animal Breeding, 62(2), 585–596. https://doi.org/10.5194/aab-62-585-2019
  • Figliola, L., Santillo, A., Ciliberti, M. G., Caroprese, M., & Albenzio, M. (2021). Chapter 7 – Nonbovine milk products as probiotic and prebiotic food. In A. G. da Cruz, C. S. Ranadheera, F. Nazzaro & A. Mortazavian (Eds.), Probiotics and prebiotics in foods (pp. 115–133). Academic Press. Retrieved December 30, 2021, from https://doi.org/10.1016/B978-0-12-819662-5.00007-0
  • Gai, N., Uniacke-Lowe, T., O’Regan, J., Faulkner, H., & Kelly, A. L. (2021). Effect of protein genotypes on physicochemical properties and protein functionality of bovine milk: A review. Foods, 10, 2409. https://doi.org/10.3390/foods10102409
  • Garau, V., Manis, C., Scano, P., & Caboni, P. (2021). Compositional characteristics of mediterranean buffalo milk and whey. Dairy, 2(3), 469–488. https://doi.org/10.3390/foods10102409
  • Giacinti, G., Basiricò, L., Ronchi, B., & Bernabucci, U. (2013). Lactoferrin concentration in buffalo milk. Italian Journal of Animal Science, 12(1), 1. https://doi.org/10.4081/ijas.2013.e23
  • Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Robles, M., Talón, M., Dopazo, J., & Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420–3435. https://doi.org/10.1093/nar/gkn176
  • Guo, M., & Hendricks, G. 2010. Chapter 14 – Improving buffalo milk. In M. W. Griffiths Ed. Improving the safety and quality of milk: Improving quality in milk products (pp. 402–416). Woodhead Publishing. https://doi.org/10.1533/9781845699437.3.402
  • Han, B. Z., Meng, Y., Li, M., Yang, Y. X., Ren, F. Z., Zeng, Q. K., & Robert, N. M. (2007). A survey on the microbiological and chemical composition of buffalo milk in China. Food Control, 18(6), 742–746. https://doi.org/10.1016/j.foodcont.2006.03.011
  • He, Y., Cao, L., & Yu, J. (2018). Prophylactic lactoferrin for preventing late-onset sepsis and necrotizing enterocolitis in preterm infants: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore), 97(35), e11976. https://doi.org/10.1097/MD.0000000000011976
  • Huang, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57. https://doi.org/10.1038/nprot.2008.211
  • Jiang, M., Meng, Z., Cheng, Z., Zhan, K., Ma, X., Yang, T., Huang, Y., Yan, Q., Gong, X., & Zhao, G. (2022). Effects of buffalo milk and cow milk on lipid metabolism in obese mice induced by high fat. Frontiers in Nutrition, 9, 841800. https://doi.org/10.3389/fnut.2022.841800
  • Jo, Y., Benoist, D. M., Barbano, D. M., & Drake, M. A. (2017). Flavor and flavor chemistry differences among milks processed by high-temperature, short-time pasteurization or ultra-pasteurization. Journal of Dairy Science, 101(5), 3812–3828. https://doi.org/10.3168/jds.2017-14071
  • Jorge-Smeding, E., Carriquiry, M., Cantalapiedra-Hijar, G., Mendoza, A., & Astessiano, A. L. (2021). Plasma concentrations of branched-chain amino acids differ with holstein genetic strain in pasture-based dairy systems. Science Report, 11(1), 22414. https://doi.org/10.1038/s41598-021-01564-0
  • Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45(D1), D353–D361. https://doi.org/10.1093/nar/gkw1092
  • Kashwa, M. (2016). Composition of water buffalo milk during the first period of lactation - relation to mozzarella cheese properties [ Master Thesis]. Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences. Retrieved January 13, 2022, from https://stud.epsilon.slu.se/8724/7/kashwa_m_160108.pdf
  • Kawasaki, K., Lafont, A. G., & Sire, J. Y. (2011). The evolution of milk casein genes from tooth genes before the origin of mammals. Molecular Biology and Evolution, 28(7), 2053–2061. https://doi.org/10.1093/molbev/msr020
  • Kokkinidou, S., & Peterson, D. G. (2014). Control of maillard-type off-flavor development in ultrahigh-temperature-processed bovine milk by phenolic chemistry. Journal of Agricultural and Food Chemistry, 62(32), 8023–8033. https://doi.org/10.1021/jf501919y
  • Leischner, C., Egert, S., Burkard, M., & Venturelli, S. (2021). Potential protective protein components of cow’s milk against certain tumor entities. Nutrients, 13(6), 1974. https://doi.org/10.3390/nu13061974
  • Li, S., Li, L., Zeng, Q., Liu, J., & Ren, D. (2016). Separation and quantification of milk casein from different buffalo breeds. Journal of Dairy Research, 83(3), 317–325. https://doi.org/10.1017/S0022029916000455
  • Li, S., Li, L., Zeng, Q., Liu, J., Yang, Y., & Ren, D. (2018). Quantitative differences in whey proteins among murrah, Nili-Ravi and mediterranean buffaloes using a TMT proteomics approach. Food Chemistry, 15(269), 228–235. https://doi.org/10.1016/j.foodchem.2018.06.122
  • Li, S., Yang, Y., Chen, C., Li, L., Valencak, T. G., & Ren, D. (2021). Differences in milk fat globule membrane proteins among Murrah, Nili-Ravi and mediterranean buffaloes revealed by a TMT proteomics approach. Food Research International, 139, 109847. https://doi.org/10.1016/j.foodres.2020.109847
  • López, R. A., Adrien, M. D. L., Ruprechter, G., de Torres, E., Meikle, A., & Moyna, G. (2021). Monitoring the transition period in dairy cows through 1H NMR-based untargeted metabolomics. Dairy, 2(3), 356–366. https://doi.org/10.3390/dairy2030028
  • Lu, J., Argov-Argaman, N., Anggrek, J., Boeren, S., van Hooijdonk, T., Vervoort, J., & Hettinga, K. A. (2016). The protein and lipid composition of the membrane of milk fat globules depends on their size. Journal of Dairy Science, 99(6), 4726–4738. https://doi.org/10.3168/jds.2015-10375
  • Lv, Z., Liu, H., Yang, Y., Bu, D., Zang, C., Yang, K., Yu, X., & Wang, J. (2020). Changes in metabolites from bovine milk with β-casein variants revealed by metabolomics. Animals, 10(6), 954. https://doi.org/10.3390/ani10060954
  • Majorek, K. A., Porebski, P. J., Dayal, A., Zimmerman, M. D., Jablonska, K., Stewart, A. J., Chruszcz, M., & Minor, W. (2012). Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular Immunology, 52(3–4), 174–182. https://doi.org/10.1016/j.molimm.2012.05.011
  • Manzoni, P. (2016). Clinical benefits of lactoferrin for infants and children. The Journal of Pediatrics, 173(Suppl), S43–52. https://doi.org/10.1016/j.jpeds.2016.02.075
  • Manzoni, P., Dall’agnola, A., Tomé, D., Kaufman, D. A., Tavella, E., Pieretto, M., Messina, A., De Luca, D., Bellaiche, M., Mosca, A., Piloquet, H., Simeoni, U., Picaud, J. C., & Del Vecchio, A. (2018). Role of lactoferrin in neonates and infants: An update. American Journal of Perinatology, 35(6), 561–565. https://doi.org/10.1055/s-0038-1639359
  • Martinez-Fernandez, G., Denman, S. E., Cheung, J., & McSweeney, C. S. (2017). Phloroglucinol degradation in the rumen promotes the capture of excess hydrogen generated from methanogenesis inhibition. Frontiers in Microbiology, 8, 1871. https://doi.org/10.3389/fmicb.2017.01871
  • Mejares, C. T., Huppertz, T., & Chandrapala, J. (2022). Thermal processing of buffalo milk – A review. International Dairy Journal, 129, 105311. https://doi.org/10.1016/j.idairyj.2021.105311
  • Minervino, A. H. H., Zava, M., Vecchio, D., & Borghese, A. (2020). Bubalus bubalis: A short story. Frontiers in Veterinary Science, 7, 570413. https://doi.org/10.3389/fvets.2020.570413
  • Nguyen, H. T. H., Ong, L., Lopez, C., Kentish, S. E., & Gras, S. L. (2017). Microstructure and physicochemical properties reveal differences between high moisture buffalo and bovine mozzarella cheeses. Food Research International, 102, 458–467. https://doi.org/10.1016/j.foodres.2017.09.032
  • OECD/FAO. (2021). OECD-FAO agricultural outlook 2021-2030. OECD Publishing. Retrieved December 17, 2021, from https://doi.org/10.1787/19428846-en
  • Otasek, D., Morris, J. H., Bouças, J., Pico, A. R., & Demchak, B. (2019). Cytoscape automation: Empowering workflow-based network analysis. Genome Biology, 20(1), 185. https://doi.org/10.1186/s13059-019-1758-4
  • Ouellette, R. J., & Rawn, J. D. (2019). Chapter 28 – Carbohydrates. In R. J. Ouellette & J. D. Rawn (Eds.),Organic chemistry: Structure, mechanism, synthesis. (2nd ed.). Academic Press. Retrieved January 11, 2022, from https://doi.org/10.1016/C2016-0-04004-4
  • Pineda, P. S., Santos, J. D. D., & Flores, E. B. (2019). Genetic polymorphism of β-casein exon 7 in buffaloes. Philippine Journal of Veterinary and Animal Sciences, 45(3), 197–202. Retrieved January 11, 2022, from https://ovcre.uplb.edu.ph/journals-uplb/index.php/PJVAS/article/view/293.
  • Prabakusuma, A. S., Aleryani, H., Kong, X., Shi, X., & Huang, A. (2022). Genotyping, physicochemical characterization, and protein isoform quantification of β-casein A2 milk in chinese simmental and Angus cattle. Emirates Journal of Food and Agriculture, 34(8), 675–687. https://doi.org/10.9755/ejfa.2022.v34.i8.2882
  • Pu, J., Vinitchaikul, P., Gu, Z., Mao, H., & Zhang, F. (2021). The use of metabolomics to reveal differences in functional substances of milk whey of dairy buffaloes raised at different altitudes. Food & Function, 12(12), 5440. https://doi.org/10.1039/D0FO03231J
  • Qiu, L., Fan, X., Teng, X., Wang, P., & Miao, Y. (2021). Molecular cloning, functional characterization, tissue expression and polymorphism analysis of buffalo PRDX6 gene. Czech Journal of Animal Science, 66(11), 450–458. https://doi.org/10.17221/42/2021-CJAS
  • Raikos, V., & Dassios, T. (2014). Health-promoting properties of bioactive peptides derived from milk proteins in infant food: A review. Dairy Science and Technology, 94(2), 91–101. https://doi.org/10.1007/s13594-013-0152-3
  • Rehman, S., Feng, T., Wu, S., Luo, X., Lei, A., Luobu, B., Hassan, F., & Liu, Q. (2021). Comparative genomics, evolutionary and gene regulatory regions analysis of casein gene family in Bubalus bubalis. Frontiers in Genetics, 12, 662609. https://doi.org/10.3389/fgene.2021.662609
  • Robenek, H., Hofnagel, O., Buers, I., Lorkowski, S., Schnoor, M., Robenek, M. J., Heid, H., Troyer, D., & Severs, N. J. (2006). Butyrophilin controls milk fat globule secretion. Proceedings of the National Academy of Sciences, 103(27), 10385–10390. https://doi.org/10.1073/pnas.0600795103
  • Salzano, A., Manganiello, G., Neglia, G., Vinale, F., De Nicola, D., D’Occhio, M., & Campanile, G. (2020). A preliminary study on metabolome profiles of buffalo milk and corresponding mozzarella cheese: Safeguarding the authenticity and traceability of protected status buffalo dairy products. Molecules, 25(2), 304. https://doi.org/10.3390/molecules25020304
  • Sarwono, K. A., Kondo, M., Ban-Tokuda, T., Jayanegara, A., & Matsui, H. (2019). Effects of phloroglucinol on in vitro methanogenesis, rumen fermentation, and microbial population density. Tropical Animal Science Journal, 42(2), 121–127. https://doi.org/10.5398/tasj.2019.42.2.121
  • Shi, W., Yuan, X., Cui, K., Li, H., Fu, P., Rehman, S. U., Shi, D., Liu, Q., & Li, Z. (2021). LC-MS/MS based metabolomics reveal candidate biomarkers and metabolic changes in different buffalo species. Animals, 11(2), 560. https://doi.org/10.3390/ani11020560
  • Smith, N. W., Fletcher, A. J., Hill, J. P., & McNabb, W. C. (2022). Modeling the contribution of milk to global nutrition. Frontiers in Nutrition, 8, 716100. https://doi.org/10.3389/fnut.2021.716100
  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787. https://doi.org/10.1021/ac051437y
  • Smolenski, G. A., Broadhurst, M. K., Stelwagen, K., Haigh, B. J., & Wheeler, T. T. (2014). Host defence related responses in bovine milk during an experimentally induced Streptococcus uberis infection. Proteome Science, 12(1), 19. https://doi.org/10.1186/1477-5956-12-19
  • Stobiecka, M., Król, J., & Brodziak, A. (2022). Antioxidant activity of milk and dairy products. Animals, 12(3), 245. https://doi.org/10.3390/ani12030245
  • Stocco, G., Pazzola, M., Dettori, M. L., Paschino, P., Bittante, G., & Vacca, G. M. (2018). Effect of composition on coagulation, curd firming, and syneresis of goat milk. Journal of Dairy Science, 101(11), 9693–9702. https://doi.org/10.3168/jds.2018-15027
  • Sun, Q., Lv, J. P., Liu, L., Zhang, S. W., Liang, X., & Lu, J. (2014). Comparison of milk samples collected from some buffalo breeds and crossbreeds in China. Dairy Science and Technology, 94(4), 387–395. https://doi.org/10.1007/s13594-013-0159-9
  • Sun, H. Z., Shi, K., Wu, X. H., Xue, M. Y., Wei, Z. H., Liu, J. X., & Liu, H. Y. (2017). Lactation-related metabolic mechanism investigated based on mammary gland metabolomics and 4 biofluids’ metabolomics relationships in dairy cows. BMC Genomics, 18(1), 936. https://doi.org/10.1186/s12864-017-4314-1
  • Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(18), 10800. https://doi.org/10.1093/nar/gkab835
  • Tian, H., Zheng, N., Wang, W., Cheng, J., Li, S., Zhang, Y., & Wang, J. (2016). Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Science Report, 6(1), 24208. https://doi.org/10.1038/srep24208
  • Trobbiani, S., Stockham, P., & Scott, T. (2017). Increasing the linear dynamic range in LC-MS: Is it valid to use a less abundant isotopologue? Drug Testing and Analysis, 9(10), 1630–1636. https://doi.org/10.1002/dta.2175
  • Tsuji, T., Febriany, D. S., Widiastuti, I., & Yazid, M. (2022). Uses of domestic water buffalo milk in South Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science, 995, 012018. https://doi.org/10.1088/1755-1315/995/1/012018
  • Tvrdý, V., Hrubša, M., Jirkovský, E., Biedermann, D., Kutý, M., Valentová, K., Kren, V., & Mladenka, P. (2021). Silymarin dehydroflavonolignans chelate zinc and partially inhibit alcohol dehydrogenase. Nutrients, 13(12), 4238. https://doi.org/10.3390/nu13124238
  • van Heerden, B. (2021). Lacto data: A milk SA publication compiled by the milk producers’ organization. Retrieved December 22, 2021, from https://www.mpo.co.za/wp-content/uploads/2021/05/LACTO-DATA-MAY-21.pdf
  • Vargas-Ramella, M., Pateiro, M., Maggiolino, A., Faccia, M., Franco, D., De Palo, P., & Lorenzo, J. M. (2021). Buffalo milk as a source of probiotic functional products. Microorganisms [Internet], 9(11), 2303. https://doi.org/10.3390/microorganisms9112303
  • Verduci, E., D’Elios, S., Cerrato, L., Comberiati, P., Calvani, M., Palazzo, S., Martelli, A., Landi, M., Trikamjee, T., & Peroni, D. G. (2019). Cow’s milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages. Nutrients, 11(8), 1739. https://doi.org/10.3390/nu11081739
  • Villaseñor, A., Garcia-Perez, I., Garcia, A., Posma, J. M., Fernández-López, M., Nicholas, A. J., Modi, N., Holmes, E., & Barbas, C. (2014). Breast milk metabolome characterization in a single-phase extraction, multiplatform analytical approach. Analytical Chemistry, 86(16), 8245–8252. https://doi.org/10.1021/ac501853d
  • Vordenbaumen, S., Braukmann, A., Altendorfer, I., Bleck, E., Jose, J., & Schneider, M. (2013). Human casein alpha s1 (CSN1S1) skews in vitro differentiation of monocytes towards macrophages. BMC Immunology, 14(1), 46. https://doi.org/10.1186/1471-2172-14-46
  • Vordenbaumen, S., Saenger, T., Braukmann, A., Tahan, T., Bleck, E., Jose, J., & Schneider, M. (2016). Human casein alpha s1 induces proinflammatory cytokine expression in monocytic cells by TLR4 signaling. Molecular Nutrition & Food Research, 60(5), 1079–1089. https://doi.org/10.1002/mnfr.201500792
  • Wada, Y., & Lonnerdal, B. (2014). Bioactive peptides derived from human milk proteins — Mechanisms of action. Journal of Nutritional Biochemistry, 25(5), 503–514. https://doi.org/10.1016/j.jnutbio.2013.10.012
  • Walter, L., Narayana, V. K., Fry, R., Logan, A., Tull, D., & Leury, B. (2020). Milk fat globule size development in the mammary epithelial cell: A potential role for ether phosphatidylethanolamine. Science Report, 10(1), 12299. https://doi.org/10.1038/s41598-020-69036-5
  • Xu, T., Chen, J., Yang, K., Qiao, W., Zhao, J., & Chen, L. (2022). Quantitative determination of whey protein to casein ratio in infant formula milk powder. Frontiers in Chemistry, 10, 872251. https://doi.org/10.3389/fchem.2022.872251
  • Yang, M., Cong, M., Peng, X., Wu, J., Wu, R., Liu, B., Ye, W., & Yue, X. (2016). Quantitative proteomics analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling. Food & Function, 7(5), 2438–2450. https://doi.org/10.1039/C6FO00083E
  • Yang, X. L., Zeng, Q., Qin, J., & Yang, C. (2007). Dairy buffalo breeding in countryside of China. Italian Journal of Animal Science, 6(sup2), 25–29. https://doi.org/10.4081/ijas.2007.s2.25
  • Ye, T., Shaukat, A., Yang, L., Chen, C., Zhou, Y., & Yang, L. (2022). Evolutionary and association analysis of buffalo FABP family genes reveal their potential role in milk performance. Genes, 13(4), 600. https://doi.org/10.3390/genes13040600
  • Yuan, X., Shi, W., Jiang, J., Li, Z., Fu, P., Yang, C., Rehman, S. U., Pauciullo, A., Liu, Q., & Shi, D. (2022). Comparative metabolomics analysis of milk components between Italian mediterranean buffaloes and Chinese holstein cows based on LC-MS/MS technology. PLoS ONE, 17(1), e0262878. https://doi.org/10.1371/journal.pone.0262878
  • Zhang, Y., Fan, X., Zhou, F., Li, W., Ouyang, Y., & Miao, Y. (2021b). Polymorphisms of the CSN1S1 gene and its protein variants in river and swamp buffalo (Bubalus bubalis). Pakistan Journal of Zoology, 53(4), 1233–1242. https://doi.org/10.17582/journal.pjz/20191202121250
  • Zhang, X., Jiang, B., Ji, C., Li, H., Yang, L., Jiang, G., Wang, Y., Liu, G., Liu, G., Min, L., & Zhao, F. (2021a). Quantitative label-free proteomics analysis of milk fat globule membrane in donkey and human milk. Frontiers in Nutrition, 8, 670099. https://doi.org/10.3389/fnut.2021.670099
  • Zhou, L., Tang, Q., Iqbal, M. W., Xia, Z., Huang, F., Li, L., Liang, M., Lin, B., Qin, G., & Zou, C. (2018). A comparison of milk protein, fat, lactose, total solids and amino acid profiles of three different buffalo breeds in Guangxi, China. Italian Journal of Animal Science, 17(4), 873–878. https://doi.org/10.1080/1828051X.2018.1443288
  • Zhou, F., Zhang, Y., Teng, X., & Miao, Y. (2020). Identification, molecular characteristics, and tissue differential expression of DGAT2 full-CDS cDNA sequence in Binglangjiang buffalo (Bubalus bubalis). Archives Animal Breeding, 63(1), 81–90. https://doi.org/10.5194/aab-63-81-2020