1,526
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Isolation and identification of dominant lactic acid bacteria and yeast species from teff (Eragrostis teff) injera dough fermentation

, , , , , , , , & show all
Pages 718-734 | Received 05 Jun 2023, Accepted 06 Oct 2023, Published online: 17 Nov 2023

References

  • Abegaz, K. (2007). Isolation, characterization and identification of lactic acid bacteria involved in traditional fermentation of borde, an Ethiopian cereal beverage. African Journal of Biotechnology. https://doi.org/10.5897/AJB2007.000-2208
  • Abiyu, H. T., Woldegiorgis, A. Z., & Haki, G. (2013). Preparation of injera from pre-fermented flour: Nutritional and sensory quality. Hiwot, 3(1), 165–175.
  • Achi, O. K. (2005). The potential for upgrading traditional fermented foods through biotechnology. African Journal of Biotechnology. https://doi.org/10.5897/AJB2005.000-3070
  • Aidoo, K. E., Rob Nout, M. J., & Sarkar, P. K. (2006). Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Research, 6(1), 30–39. https://doi.org/10.1111/j.1567-1364.2005.00015.x
  • Akalu, N., Assefa, F., & Dessalegn, A. (2017). In vitro evaluation of lactic acid bacteria isolated from traditional fermented shamita and Kocho for their desirable characteristics as probiotics. African Journal of Biotechnology, 16(12), 594–606. https://doi.org/10.5897/AJB2016.15307
  • Akinola, S. A., & Osundahunsi, O. F. (2021). Lactic acid bacteria and yeast diversities in spontaneously fermented millet sourdoughs. Journal of Microbiology, Biotechnology and Food Sciences, 6(4), 1030–1035. https://doi.org/10.15414/jmbfs.2017.6.4.1030-1035
  • Ali, M. S., & Latif, Z. (2016). Molecular characterization of yeast strains isolated from different sources by restriction fragment length polymorphism. Pakistan Journal of Botany, 8(1), 363–370.
  • Ali, A. A., & Mustafa, M. M. (2009a). Isolation, characterization and identification of lactic acid bacteria from fermented sorghum dough used in Sudanese kisra preparation. Pakistan Journal of Nutrition, 8(11), 1814–1818. https://doi.org/10.3923/pjn.2009.1814.1818
  • Ali, A. A., & Mustafa, M. M. (2009b). Use of starter cultures of lactic acid bacteria and yeasts in the preparation of kisra, a Sudanese fermented food. Pakistan Journal of Nutrition, 8(9), 1349–1353. https://doi.org/10.3923/pjn.2009.1349.1353
  • Allen Foegeding, E., Brown, J., Drake, M., & Daubert, C. R. (2003). Sensory and mechanical aspects of cheese texture. International Dairy Journal, 13(8), 585–591. https://doi.org/10.1016/S0958-6946(03)00094-3
  • AOAC. (1995). Official Methods of Analysis (16th ed.). Association of Official Analytical Chemists.
  • AOAC. (2000). Official methods of analysis of AOAC. In International 17th Edition.
  • Ashaolu, T. J. (2019). A review on selection of fermentative microorganisms for functional foods and beverages: The production and future perspectives. International Journal of Food Science and Technology, 1–9. https://doi.org/10.1111/ijfs.14181
  • Ashenafi, M. (1994). Microbial flora and some chemical properties of ersho, a starter for teff (eragrostis tef) fermentation. World Journal of Microbiology & Biotechnology, 10(1), 69–73.
  • Ashenafi, M. (2002). The microbiology of Ethiopian foods and beverages: A review. SINET: Ethiopian Journal of Science, 25(1), 1–44. https://doi.org/10.4314/sinet.v25i1.18076
  • Ashenafi, M. (2006). A review on the microbiology of indigenous fermented foods and beverages of Ethiopia. Ethiopian Journal of Biological Sciences, 5(2), 189–245. https://doi.org/10.4314/ejbs.v5i2.39036
  • Ashenafi, M. (2008). Review article: A review on the Microbiology of indigenous fermented foods and beverages of Ethiopia. Ethiopian Journal of Biological Sciences, 5(2). https://doi.org/10.4314/ejbs.v5i2.39036
  • Asnake, D., & Mogessie, A. (2010). Evaluation of the Probiotic Properties and Antibiotic Resistance of Lactic Acid Bacteria Isolated from Awaze, Qotchqotcha and Tef dough, traditional Ethiopia. Internet Journal of Food Safety, 12, 187–191.
  • Assefa, Y., Emire, S., Abebe, W., & Ronda, F. (2018). Effect of mill type and mechanical kneading conditions on fermentation kinetics of tef dough during injera making and phytate to mineral molar ratio of injera. Journal of Food Science and Technology, 7(2), 1–23.
  • Baka, A. M., Papavergou, E. J., Pragalaki, T., Bloukas, J. G., & Kotzekidou, P. (2011). Effect of selected autochthonous starter cultures on processing and quality characteristics of Greek fermented sausages. LWT - Food Science and Technology, 44(1), 54–61. https://doi.org/10.1016/j.lwt.2010.05.019
  • Bartkiene, E., Lele, V., Ruzauskas, M., Domig, K. J., Starkute, V., Zavistanaviciute, P., Bartkevics, V., Pugajeva, I., Klupsaite, D., Juodeikiene, G., Mickiene, R., & Rocha, J. M. (2020). Lactic acid bacteria isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation. Microorganisms [Internet], 8(1), 64. https://doi.org/10.3390/microorganisms8010064
  • Baye, K., Mouquet-Rivier, C., Icard-Vernière, C., Rochette, I., & Guyot, J.-P. (2013). Influence of flour blend composition on fermentation kinetics and phytate hydrolysis of sourdough used to make injera. Food Chemistry, 138(1), 430–436. https://doi.org/10.1016/j.foodchem.2012.10.075
  • Beyene, E., Tefera, A. T., Muleta, D., Fantahun, S. K., & Wessel, G. M. (2020). Molecular identification and performance evaluation of wild yeasts from different Ethiopian fermented products. Journal of Food Science and Technology, 57(9), 3436–3444. https://doi.org/10.1007/s13197-020-04377-7
  • Bhalla, T. C., & Savitri. (2017). Yeasts and traditional fermented foods and beverages. Yeast Diversity in Human Welfare. https://doi.org/10.1007/978-981-10-2621-8_3
  • Blandino, A., Al-Aseeri, M. E., Pandiella, S. S., Cantero, D., & Webb, C. (2003). Cereal-based fermented foods and beverages. Food Research International, 36(6), 527–543. https://doi.org/10.1016/S0963-9969(03)00009-7
  • Bover-Cid, S., Izquierdo-Pulido, M., & Vidal-Carou, M. C. (2001). Effectiveness of a Lactobacillus sakei starter culture in the reduction of biogenic amine accumulation as a function of the raw material quality. Journal of Food Protection, 64(3), 367–373. https://doi.org/10.4315/0362-028X-64.3.367
  • Brandt, M. J., Hammes, W. P., & Gänzle, M. G. (2004). Effects of process parameters on growth and metabolism of Lactobacillus sanfranciscensis and Candida humilis during rye sourdough fermentation. European Food Research and Technology, 218(4), 333–338. https://doi.org/10.1007/s00217-003-0867-0
  • Bultosa, G., Hamaker, B. R., & Bemiller, J. N. (2008). An SEC-MALLS study of molecular features of water-soluble amylopectin and amylose of tef [eragrostis tef (zuce.) trotter] starches. Starch/Staerke, 60(1), 8–22. https://doi.org/10.1002/star.200700642
  • Bultosa, G., & Taylor, J. R. N. (2004). Teff. Encyclopedia of Grain Science. https://doi.org/10.1016/b0-12-765490-9/00172-5
  • Burnison, H., Granato, T., King, M., Peoples, H., & Hallidayschult, T. (2018). The Effect of monosaccharides versus disaccharides on the rate of CO2 production. Journal of Undergraduate Biology Laboratory Investigations, 1(1), 1–4.
  • Ciuciu Simion, A. M., Vizireanu, C., Alexe, P., Franco, I., & Carballo, J. (2014). Effect of the use of selected starter cultures on some quality, safety and sensorial properties of dacia sausage, a traditional Romanian dry-sausage variety. Food Control, 35(1), 123–131. https://doi.org/10.1016/j.foodcont.2013.06.047
  • Cletus Kurtzman, J. W., & Fell, T. B. (2011). The yeasts: A taxonomic study (Vol. 1). Elsivier.
  • Dandessa, C. (2019). Review on Ethiopian traditional fermented foods, its microbial ecology and nutritional value. International Journal of Current Research and Academic Review, 7(5), 13–27.
  • da Silva, N., Taniwaki, M. H., Junqueira, V. C. A., Silveira, N., Okazaki, M. M., & Gomes, R. A. R. (2013). Microbiological examination methods of Food and water a laboratory Manual (2nd ed.). CRC Press.
  • Desiye, A., & Abegaz, K. (2013). Isolation, characterization and identification of lactic acid bacteria and yeast involved in fermentation of teff (Eragrostis tef) batter. Advanced Research in Biological Sciences, 1(3), 35–44.
  • Desiye, A., Abegaz, K., Negera, E., & Gobena, E. (2017). The Microbiology of teff (Eragrostis tef) enjera. The Microbiology of Teff (Eragrostis Tef) Enjera, 2(2), 115–120.
  • De Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K.-H., & Whitman, W. B. (2009). Bergey’s manual of systematic bacteriology volume three the firmicutes. In Bergey’s Manual of Systematic Bacteriology (2nd ed.). Springer International Publishing.
  • Ebabhi, A. M., Adekunle, A. A., Okunowo, W. O., & Osuntoki, A. A. (2013). Isolation and characterization of yeast strains from local food crops. Journal of Yeast and Fungal Research, 4(4), 38–43.
  • Elsa, B. G., Anteneh, T. T., Diriba, M., Solomon, K. F., & Gary, M. W. (2019). Optimization of the cultivation conditions of indigenous wild yeasts and evaluation of their leavening capacity. BioRxiv, 6(10), 1–25.
  • Elyas, Y. Y. A., Yousif, N. M. E., & Ahmed, I. A. M. (2015). Screening of lactic acid bacteria from Sudanese fermented foods for bacteriocin production. Journal of Microbiology, Biotechnology and Food Sciences, 4(5), 373–378. https://doi.org/10.15414/jmbfs.2015.4.5.373-378
  • Ewuoso, M. O., Animashaun, O. H., & Adejumo, A. A. (2020). Lactic acid bacteria and yeasts in spontaneously fermented sorghum sourdough. American Journal of Microbiological Research, 8(2), 63–72.
  • Fugelsang, K. C., & Edwards, C. G. (2007). Wine microbiology: Practical applications and procedures. Springer.
  • Gawai, K. M., & Prajapati, J. B. (2017). Safety aspects of fermented and probiotic foods. International Journal of Fermented Foods, 6(1), 45. https://doi.org/10.5958/2321-712x.2017.00005.9
  • Gebru, Y. A., & Sbhatu, D. B. (2020). Isolation and characterization of probiotic LAB from kimchi and spontaneously fermented teff (Eragrostis tef (Zucc.) Trotter) batter: Their effects on phenolic content of teff during fermentation. BioMed Research International, 2020, 1–9. https://doi.org/10.1155/2020/4014969
  • Gholami-Shabani, M., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2023). Food microbiology: Application of microorganisms in Food Industry. IntechOpen. https://doi.org/10.5772/intechopen.109729
  • Gizaw, B. (2018). Traditional knowledge on teff (eragrostistef) farming practice and role of Crop Rotation to enrich plant growth promoting microbes for soil fertility in east Showa: Ethiopia. Agricultural Research & Technology: Open Access Journal, 16(5). https://doi.org/10.19080/artoaj.2018.16.556001
  • Guesh, M., Tessema, T. S., & Tesfaye, M. D. A., Tesfaye, A. (2019). In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. International Journal of Microbiology, 2019, 1–11. https://doi.org/10.1155/2019/7179514
  • Gunkova, P. I., Buchilina, A. S., Maksimiuk, N. N., Bazarnova, Y. G., & Girel, K. S. (2021). Carbohydrate fermentation test of lactic acid starter cultures. Iop Conference, 852(1), 1–5. https://doi.org/10.1088/1755-1315/852/1/012035
  • Halász, A. (2009). Lactic acid bacteria. Food Quality and Standards, 3(2009), 70–82.
  • Hansen, E. B. (2002). Commercial bacterial starter cultures for fermented foods of the future. International Journal of Food Microbiology, 78(1–2), 119–131. https://doi.org/10.1016/S0168-1605(02)00238-6
  • Harth, H., Van Kerrebroeck, S., & De Vuyst, L. (2018). Impact of process conditions on the microbial community dynamics and metabolite production kinetics of teff sourdough fermentations under bakery and laboratory conditions. Food Science & Nutrition, 6(6), 1438–1455. https://doi.org/10.1002/fsn3.690
  • Holzapfel, W. H. (2002). Appropriate starter culture technologies for small-scale fermentation in developing countries. International Journal of Food Microbiology, 75(2002), 197–212. https://doi.org/10.1016/S0168-1605(01)00707-3
  • Hoque, M. Z., Akter, F., Hossain, K. M., Rahman, M. S. M., Billah, M. M., & Islam, K. M. D. (2010). Isolation, identification and analysis of probiotic properties of Lactobacillus spp. From selective regional yoghurts. World Journal of Dairy & Food Sciences, 5(1), 39–46.
  • Hotessa, N., Robe, J., & Comi, G. (2020). Ethiopian indigenous traditional fermented beverage: The role of the microorganisms toward nutritional and safety value of fermented beverage. International Journal of Microbiology, 2020, 1–11. https://doi.org/10.1155/2020/8891259
  • Htet, N. N. W., Hlaing, T. S., Yu, S. Z., & Yu, S. S. (2018). Isolation and characterization of xylose-utilizing yeasts for ethanol production. Journal of Bacteriology & Mycology: Open Access, 6(2), 109–114. https://doi.org/10.15406/jbmoa.2018.06.00186
  • Iruene, I. T., Wafula, E. N., Kuja, J., & Mathara, J. M. (2021). Phenotypic and genotypic characterization of lactic acid bacteria isolated from spontaneously fermented vegetable amaranth. African Journal of Food Science, 15(6), 254–261. https://doi.org/10.5897/AJFS2021.2107
  • Joshi, V. K., & Sharma, S. (2009). Cider vinegar: Microbiology, technology and quality. Vinegars of the World, 197–207. https://doi.org/10.1007/978-88-470-0866-3_12
  • Jula, M. N. (2020). Quality and microbiological study of Bambara groundnut fortified injera, a fermented flat bread [Doctorial Dissertation]. Durban University of Technology, 1–140.
  • Jung, S.-W., Kim, W.-J., Lee, K.-G., Kim, C.-W., & Noh, W.-S. (2009). Isolation and identification of lactic acid bacteria from sourdough with high exopolysaccharide production ability. Food Science and Biotechnology, 18(2), 384–389.
  • Karki, T. B., Timilsina, P. M., Yadav, A., Pandey, G. R., Joshi, Y., Bhujel, S., Adhikari, R., & Neupane, K. (2017). Selection and characterization of potential Baker’s yeast from indigenous resources of Nepal. Biotechnology Research International, 2017, 1–10. https://doi.org/10.1155/2017/1925820
  • Kimaryo, V. M., Massawe, G. A., Olasupo, N. A., & Holzapfel, W. H. (2000). The use of a starter culture in the fermentation of cassava for the production of “kivunde”, a traditional Tanzanian food product. International Journal of Food Microbiology, 56(2–3), 179–190. https://doi.org/10.1016/S0168-1605(00)00159-8
  • Koricha, A. D., Han, D., Bacha, K., & Bai, F. (2020). Diversity and distribution of yeasts in indigenous fermented foods and beverages of Ethiopia. Journal of the Science of Food and Agriculture, 100(9), 3630–3638. https://doi.org/10.1002/jsfa.10391
  • Kostinek, M., Specht, I., Edward, V. A., Schillinger, U., Hertel, C., Holzapfel, W. H., & Franz, C. M. A. P. (2005). Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food. Systematic and Applied Microbiology, 28(6), 527–540. https://doi.org/10.1016/j.syapm.2005.03.001
  • Kozlinskis, S., & Klava, K. (2008). Characterization of rye sourdough microflora. FOODBALT-2008(1), 89–92.
  • Kozlinskis, E., Skudra, L., Klava, D., & Kunkulberga, D. (2008). Lactic acid bacteria in rye sourdough from crude and peeled rye flour. In Research for Rural Development. International Scientific Conference Proceedings (pp. 308–312). Latvia University of Agriculture.
  • Kumari, S., Jha, A. K., & Singh, A. K. (2019). Isolation and characterization of temperature and ethanol tolerant strain of Saccharomyces cerevisiae strains from naturally fermented juices. Biosciences, Biotechnology Research Asia, 16(1), 97–103. https://doi.org/10.13005/bbra/2726
  • Liu, C. F., & Pan, T. M. (2010). In vitro effects of lactic acid bacteria on cancer cell viability and antioxidant activity. Journal of Food and Drug Analysis. https://doi.org/10.38212/2224-6614.2287
  • Mannan, S. J., Rezwan, R., Rahman, M. S., & Begum, K. (2017). Isolation and biochemical characterization of Lactobacillus species from yogurt and cheese samples in Dhaka metropolitan area. Bangladesh Pharmaceutical Journal, 20(1), 27–33. https://doi.org/10.3329/bpj.v20i1.32090
  • Maqsood, S., Hasan, F., & Masud, T. (2013). Characterization of lactic acid bacteria isolated from indigenous dahi samples for potential source of starter culture. African Journal of Biotechnology, 12(33), 5226–5231. https://doi.org/10.5897/AJB09.1172
  • Martorana, A., Giuffrè, A. M., Capocasale, M., Zappia, C., & Sidari, R. (2018). Sourdoughs as a source of lactic acid bacteria and yeasts with technological characteristics useful for improved bakery products. European Food Research & Technology, 244(10), 1873–1885. https://doi.org/10.1007/s00217-018-3100-x
  • Mengesha, Y., Tebeje, A., Tilahun, B., & Owusu-Kwarteng, J. (2022). A review on factors influencing the fermentation process of teff (Eragrostis teff) and other cereal-based Ethiopian injera. International Journal of Food Science, 2022, 1–10. https://doi.org/10.1155/2022/4419955
  • Meroth, C. B., Hammes, W. P., & Hertel, C. (2003). Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 69(12), 7453–7461. https://doi.org/10.1128/AEM.69.12.7453-7461.2003
  • Mezemir, S. (2015). Probiotic potential and nutritional importance of teff (eragrostis tef (zucc) trotter) enjerra-a review. African Journal of Food Agriculture Nutrition & Development, 15(2), 9964–9981. https://doi.org/10.18697/ajfand.69.13905
  • Moneim, A., & Sulieman, E. (2018). Microbial starter cultures. May.
  • Moroni, A. V., Arendt, E. K., & Dal Bello, F. (2011). Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiology, 28(3), 497–502. https://doi.org/10.1016/j.fm.2010.10.016
  • Mugula, J. K., Nnko, S. A. M., Narvhus, J. A., & Sørhaug, T. (2003). Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. International Journal of Food Microbiology, 80(3), 187–199. https://doi.org/10.1016/S0168-1605(02)00141-1
  • Mulaw, G., Sisay Tessema, T., Muleta, D., & Tesfaye, A. (2019). In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. International Journal of Microbiology, 1–12.
  • Mulaw, G., & Tesfaye, A. (2017). Technology and microbiology of traditionally fermented food and beverage products of Ethiopia: A review. African Journal of Microbiology Research, 11(21), 825–844.
  • Negera, T. (2017). Isolation and characterization of ethanol, sugar and thermo tolerant yeast isolates in Ethiopia. International Journal of Research Studies in Biosciences, 5(8), 14–20.
  • Nigatu, A., Ahrné, S., & Molin, G. (2000). Temperature-dependent variation in API 50 CH fermentation profiles of lactobacillus species. Current Microbiology, 41(1), 21–26. https://doi.org/10.1007/s002840010085
  • Nigatu, A., Gashe, B. A., & Ayele, T. (1997). Bacillus spp from fermented tef dough and kocho: Identity and role in two Ethiopian fermented foods. SINET: Ethiopian Journal of Science, 20(1), 101–114.
  • Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 6(8), 2446–2458. https://doi.org/10.1002/fsn3.846
  • Ogunsakin, A. O., Vanajakshi, V., Anu-Appaiah, K. A., Vijayendra, S. V. N., Walde, S. G., Banwo, K., Sanni, A. I., & Prabhasankar, P. (2017). Evaluation of functionally important lactic acid bacteria and yeasts from Nigerian sorghum as starter cultures for gluten-free sourdough preparation. LWT-Food Science and Technology, 82, 326–334. https://doi.org/10.1016/j.lwt.2017.04.048
  • Ozturk, G., & Young, G. M. (2017). Food evolution: The impact of society and science on the fermentation of cocoa beans. Comprehensive Reviews in Food Science and Food Safety, 16(3), 1–10. https://doi.org/10.1111/1541-4337.12264
  • Pedersen, L. L., Owusu-Kwarteng, J., Thorsen, L., & Jespersen, L. (2012). Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology, 159(2), 144–151. https://doi.org/10.1016/j.ijfoodmicro.2012.08.016
  • Perricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006
  • Petkova, M., Stefanova, P., Gotcheva, V., & Angelov, A. (2021). Isolation and characterization of lactic acid bacteria and yeasts from typical Bulgarian sourdoughs. Microorganisms [Internet], 9(7), 1–18. https://doi.org/10.3390/microorganisms9071346
  • Pundir, R. K., Rana, S., Kashyap, N., & Kaur, A. (2013). Probiotic potential of lactic acid bacteria isolated from food samples: an in vitro study. Journal of Applied Pharmaceutical Science, 3(3), 85–93.
  • Reiner, K. (2010). Catalase test protocol. American Society for Microbiology, 1(1), 1–9.
  • Reiner, K. (2012). Carbohydrate fermentation protocol. American Society of Microbiology, 3(5), 1–12.
  • Roberts, D., & Greenwood, M. (2003). Practical Food Microbiology (3rd ed.). Blackwell Publishing Inc.
  • Saeed, M., Anjum, F. M., Tahir, Z., & Haq, N. (2009). Isolation and characterization of starter culture from spontaneous fermentation of sourdough. International Journal of Agriculture & Biology, 11(3), 329–332.
  • Saeed, R. M., Elyas, Y. Y. A., Yousif, N. M. E., Eltayeb, M. M., & Ahmed, I. A. M. (2014). Incidence of antibiotic resistance of lactic acid bacteria (LAB) isolated from various Sudanese fermented foods. Journal of Food & Nutritional Disorders, 6, 2.
  • Şanlier, N., Gökcen, B. B., & Sezgin, A. C. (2019). Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 59(3), 506–527. https://doi.org/10.1080/10408398.2017.1383355
  • Scheirlinck, I., Van der Meulen, R., Van Schoor, A., Cleenwerck, I., Huys, G., Vandamme, P., & De Vuyst, L. (2007). Lactobacillus namurensis sp. nov., isolated from a traditional Belgian sourdough. International Journal of Systematic and Evolutionary Microbiology, 57(7), 1461–1467. https://doi.org/10.1099/ijs.0.64836-0
  • Schillinger, U., & Lücke, F. K. (1987). Identification of lactobacilli from meat and meat products. Food Microbiology, 4(3). https://doi.org/10.1016/0740-0020(87)90002-5
  • Sevgili, A., Erkmen, O., & Koçaslan, S. (2021). Identification of lactic acid bacteria and yeasts from traditional sourdoughs and sourdough production by enrichment. Czech Journal of Food Sciences, 39(4), 312–318. https://doi.org/10.17221/56/2021-CJFS
  • Shona, Y. (2020). Isolation and characterization of yeast as potential probiotics from fermented cereals dough. Journal of Veterinary Medicine and Research, 7(6), 1–7.
  • Sicard, D., & Legras, J. L. (2011). Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus - Biologies, 334(3), 229–236. https://doi.org/10.1016/j.crvi.2010.12.016
  • Sieuwerts, S., de Bok, F. A., Hugenholtz, J., & van Hylckama Vlieg, J. E. (2008). Unraveling microbial interactions in food fermentations: From classical to genomics approaches. Applied & Environmental Microbiology, 74(16), 4997–5007. https://doi.org/10.1128/AEM.00113-08
  • Simonson, L., Salovaara, H., & Korhola, M. (2003). Response of wheat sourdough parameters to temperature, NaCl and sucrose variations. Food Microbiology, 20(2), 193–199. https://doi.org/10.1016/S0740-0020(02)00117-X
  • Stewart, C. S., Duncan, S. H., Richardson, A. J., Calder, A. G., & Dewey, P. J. S. (2000). The effect of the presence of glucose on the fermentation of mannose by the anaerobic fungus neocallimastix frontalis strain RE1. FEMS Microbiology Letters, 127(1–2), 57–63. https://doi.org/10.1111/j.1574-6968.1995.tb07450.x
  • Sulmiyati, S., Said, N. S., Fahrodi, D. U., Malaka, R., & Maruddin, F. (2019). The characteristics yeast isolated from commercial kefir grain, Indonesia. Hasanuddin Journal of Animal Science (HAJAS), 1(1), 26–36. https://doi.org/10.20956/hajas.v1i1.6519
  • Sultana, M. J., Refaya, R., Shajidur Md, R., & Begum, K. (2017). Isolation and biochemical characterization of lactobacillus species from yogurt and cheese samples in Dhaka Metropolitan Area. Bangladesh Pharmaceutical Journal, 20(1), 27–33. https://doi.org/10.3329/bpj.v20i1.32090
  • Syal, P., & Vohra, A. (2013). Probiotic potential of yeasts isolated from traditional Indian fermented foods. International Journal of Microbiology Research, 5(2), 390–398. https://doi.org/10.9735/0975-5276.5.2.390-398
  • Tadesse, T., Yimer, D., Tibebu, T., Workie, M., Kebede, B., Abera, S., Tilahun, A., Alemu, M., Daba, T., Eshetu, A., Alemneh, A., Babiye, B., Dida, G., & Abena, T. (2021). Evaluating the probiotic potential of yeasts isolated from Ethiopian traditionally fermented foods and dairy products. 1(1), 1–10. https://doi.org/10.53430/ijsru.2021.1.1.0011
  • Tafere, G. (2015). A review on traditional fermented beverages of Ethiopian. Journal of Natural Sciences Research, 5(15), 94–102.
  • Tafesee, T., Beyene, F., & Amenu, D. (2020). Evaluation of Lactic Acid Bacteria Isolated from Ethiopian traditional fermented food (“Borde”) and beverage (“Ititu”) as a Starter Culture for Ayib Production. International Journal of Advanced Research in Biological Sciences, 7(9), 42–52.
  • Tamang, J. P., Dewan, S., Tamang, B., Rai, A., Schillinger, U., & Holzapfel, W. H. (2007). Lactic acid bacteria in Hamei and Marcha of North east India. Indian Journal of Microbiology, 47(2), 119–125. https://doi.org/10.1007/s12088-007-0024-8
  • Tamene, A., Baye, K., Kariluoto, S., Edelmann, M., Bationo, F., Leconte, N., & Humblot, C. (2019). Lactobacillus plantarum P2R3FA isolated from traditional cereal-based fermented food increase folate status in deficient rats. Nutrients, 11(11), 2819. https://doi.org/10.3390/nu11112819
  • Tamene, A., Kariluoto, S., Baye, K., & Humblot, C. (2019). Quantification of folate in the main steps of traditional processing of tef injera, a cereal based fermented staple food. Journal of Cereal Science, 87, 225–230. https://doi.org/10.1016/j.jcs.2019.04.005
  • Thapa, N., Pal, J., & Tamang, J. P. (2004). Microbial diversity in ngari, hentak and tungtap, fermented fish products of North-east India. World Journal of Microbiology and Biotechnology, 20(6), 599–607. https://doi.org/10.1023/B:WIBI.0000043171.91027.7e
  • Thiele, C., Gänzle, M. G., & Vogel, R. F. (2002). Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chemistry, 79(1), 45–51. https://doi.org/10.1094/CCHEM.2002.79.1.45
  • Tikka, C., Osuru, H. P., Atluri, N., Raghavulu, P. C. V., Yellapu, N. K., Mannur, I. S., Prasad, U. V., Aluru, S., K, N. V., & Bhaskar, M. (2013). Isolation and characterization of ethanol tolerant yeast strains. Bioinformation, 9(8), 421–425. https://doi.org/10.6026/97320630009421
  • Tilahun, B., Bahiru, A., Tesfaye, A., Diriba, M., Zewdu, T., & Wessel, G. (2019). Molecular characterization of fermenting yeast species from fermented teff dough during preparation of injera using ITS DNA sequence. International Journal of Food Science, 201, 1–7. https://doi.org/10.1155/2019/1291863
  • Tilahun, B., Tesfaye, A., Muleta, D., Bahiru, A., Terefework, Z., & Wessel, G. (2018). Isolation and Molecular identification of lactic acid bacteria using 16s rRNA genes from fermented teff (Eragrostis tef (Zucc.)) dough. International Journal of Food Science, 2018, 1–7. https://doi.org/10.1155/2018/8510620
  • Tsegaye, Z., Tefera, G., Gizaw, B., & Abatenh, E. (2018). Characterization of yeast species isolated from local fruits used for bakery industrial application. Journal of Applied Microbiological Research, 1(1), 21–26.
  • Urga, K., Fite, A., & Biratu, E. (2000). Effect of natural fermentation on nutritional and antinutritional factors of tef (Eragrostis tef). Ethiopian Journal of Health Development, 11(1), 1–7.
  • Valmorri, S., Tofalo, R., Settanni, L., Corsetti, A., & Suzzi, G. (2010). Yeast microbiota associated with spontaneous sourdough fermentations in the production of traditional wheat sourdough breads of the Abruzzo region (Italy). Antonie Van Leeuwenhoek, 97(2), 119–129. https://doi.org/10.1007/s10482-009-9392-x
  • Vrancken, G., De Vuyst, L., Meulen, R., Huys, G., Vandamme, P., & Daniel, H.-M. (2010). Yeast species composition differs between artisan bakery and spontaneous laboratory sourdough. FEMS Yeast Research, 10(4), 471–481. https://doi.org/10.1111/j.1567-1364.2010.00621.x
  • Wafula, E. N., Kuja, J. O., Wekesa, T. B., & Wanjala, P. M. (2023). Isolation and identification of autochthonous lactic acid bacteria from commonly consumed African indigenous leafy vegetables in Kenya. Bacteria, 2(1), 1–20. https://doi.org/10.3390/bacteria2010001
  • Webster, A., Scherer, S., Fabri, K., Doudican, H., & Felder, M. (2019). Saccharomyces cerevisiae ferments monosaccharides faster than disaccharides. Journal of Undergraduate Biology Laboratory Investigations, 2(1), 1–4.
  • Wedajo Lemi, B. (2020). Microbiology of Ethiopian traditionally fermented beverages and condiments. International Journal of Microbiology, 2020, 1–8. https://doi.org/10.1155/2020/1478536
  • Wouters, J. T. M., Ayad, E. H. E., Hugenholtz, J., & Smit, G. (2002). Microbes from raw milk for fermented dairy products. International Dairy Journal, 12(2–3), 91–109. https://doi.org/10.1016/S0958-6946(01)00151-0
  • Wu, R. N., Wu, Z. X., Zhao, C. Y., Lv, C. M., Wu, J. R., & Meng, X. J. (2014). Identification of lactic acid bacteria in suancai, a traditional Northeastern Chinese fermented food, and salt response of Lactobacillus paracasei LN-1. Annals of Microbiology, 64(3), 1325–1332. https://doi.org/10.1007/s13213-013-0776-9
  • Xiang, H., Sun-Waterhouse, D., Waterhouse, G. I. N., Cui, C., & Ruan, Z. (2019). Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8(3), 203–243. https://doi.org/10.1016/j.fshw.2019.08.003
  • Yalcin, S. K., & Ozbas, Z. Y. (2008). Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey. Brazilian Journal of Microbiology, 39(2), 325–332. https://doi.org/10.1590/S1517-83822008000200024
  • Yang, Q., Rutherfurd-Markwick, K., & Mutukumira, A. N. (2021). Identification of dominant lactic acid bacteria and yeast in rice sourdough produced in New Zealand. Current Research in Food Science, 4, 729–736. https://doi.org/10.1016/j.crfs.2021.10.002
  • Zapaśnik, A., Sokołowska, B., & Bryła, M. (2022). Role of lactic acid bacteria in food preservation and safety. Foods, 11(9), 1283. https://doi.org/10.3390/foods11091283
  • Zhao, D. (2011). Isolation of antifungal lactic acid bacteria from food sources and their use to inhibit mold growth in cheese.
  • Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus lactobacillus: Description of 23 novel genera, emended description of the genus lactobacillus beijerinck 1901, and union of lactobacillaceae and leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107