340
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of high DHA and ARA fortification on non-enzymatic browning of infant formula powder

, &
Article: 2290072 | Received 18 Jul 2023, Accepted 24 Nov 2023, Published online: 16 Jan 2024

References

  • Aalaei, K., Sjöholm, I., Rayner, M., Teixeira, C., Tareke, E., & Banoub, J. (2019). Early and advanced stages of Maillard reaction in infant formulas: Analysis of available lysine and carboxymethyl-lysine. PLOS ONE, 14(7), e0220138. https://doi.org/10.1371/journal.pone.0220138
  • Albalá-Hurtado, S., Veciana-Nogués, M. T., Mariné-Font, A., & Vidal-Carou, M. C. (1998). Changes in furfural compounds during storage of infant milks. Journal of Agricultural and Food Chemistry, 46(8), 2998–9. https://doi.org/10.1021/jf980079f
  • Chávez-Servín, J. L., Castellote, A. I., & Lopez-Sabater, M. C. (2006). Evolution of potential and free furfural compounds in milk-based Infant Formula during storage. Food Research International, 39(5), 536–543. https://doi.org/10.1016/j.foodres.2005.10.012
  • Chávez-Servín, J. L., Castellote, A. I., Martin, M., Chifré, R., & Carmen López-Sabater, M. C. (2009). Stability during storage of LC-PUFA-supplemented infant formula containing single cell oil or egg yolk. Food Chemistry, 113(2), 484–492. https://doi.org/10.1016/j.foodchem.2008.07.082
  • Chávez-Servín, J. L., de la Torre Carbot, K. D. L. T., Garcia-Gasca, T., Castellote, A. I., & Lopez-Sabater, M. C. (2015). Content and evolution of potential furfural compounds in commercial milk-based infant formula powder after opening the packet. Food Chemistry, 166(janvier 1), 486–491. https://doi.org/10.1016/j.foodchem.2014.06.050
  • Cheng, H., Erichsen, H., Soerensen, J., Petersen, M. A., & Skibsted, L. H. (2019). Optimising water activity for storage of high lipid and high protein infant formula milk powder using multivariate analysis. International Dairy Journal, 93, 92–98. https://doi.org/10.1016/j.idairyj.2019.02.008
  • Cheng, H., Zhu, R. G., Erichsen, H., Soerensen, J., Petersen, M. A., & Skibsted, L. H. (2017). High temperature storage of infant formula milk powder for prediction of storage stability at ambient conditions. International Dairy Journal, 73, 166–174. https://doi.org/10.1016/j.idairyj.2017.05.007
  • Contreras-Calderón, J., Guerra-Hernández, E., & García-Villanova, B. (2008). Indicators of non-enzymatic browning in the evaluation of heat damage of ingredient proteins used in manufactured infant formulas. European Food Research and Technology, 227(1), 117–124. https://doi.org/10.1007/s00217-007-0700-2
  • Feng, P., Gao, M., Burgher, A., Zhou, T. H., & Pramuk, K. (2016). A nine-country study of the protein content and amino acid composition of mature human milk. Food and Nutrition Research, 60(1), 31042. https://doi.org/10.3402/fnr.v60.31042
  • Ferrer, E., Alegría, A., Farré, R., Abellán, P., & Romero, F. (2005). High-performance liquid chromatographic determination of furfural compounds in infant formulas during full shelf-life. Food Chemistry, 89(4), 639–645. https://doi.org/10.1016/j.foodchem.2004.05.040
  • Fitzpatrick, J. J., Hodnett, M., Twomey, M., Cerqueira, P. S. M., O“flynn, J., & Roos, Y. H. (2007). Glass transition and the flowability and caking of powders containing amorphous lactose. Powder Technology, 178(2), 119–128. https://doi.org/10.1016/j.powtec.2007.04.017
  • Hodson, A. Z. (1950). Amino acid content of evaporated milk on prolonged storage. Industrial and Engineering Chemistry, 42(4), 694–695. https://doi.org/10.1021/ie50484a036
  • Jia, H. X., Chen, W. L., Qi, X. Y., & Su, M. Y. (2019). The stability of milk-based infant formulas during accelerated storage. CyTa–Journal of Food, 17(1), 96–104. https://doi.org/10.1080/19476337.2018.1561519
  • Kim, M. N., Saltmarch, M., & Labuza, T. P. (1981). Non-enzymatic browning of hygroscopic whey powders in open versus sealed pouches. Journal of Food Pro Cessing and Preservation, 5(1), 49–57. https://doi.org/10.1111/j.1745-4549.1981.tb00619.x
  • Lien, E. L., Richard, C., & Hoffman, D. R. (2018). DHA and ARA addition to infant formula: Current status and future research directions. Prostaglandins, Leukotrienes and Essential Fatty Acids, 128, 26–40. https://doi.org/10.1016/j.plefa.2017.09.005
  • Ma, X., Ali, M. M., Liang, J., Du, Z., & Shen, Z. (2022). Analysis of the evolution of potential and free furfural compounds in the production chain of infant formula and risk assessment. Food Chemistry, 368, 130814. https://doi.org/10.1016/j.foodchem.2021.130814
  • Maduko, Y., & Akoh, C. C. (2006). Effect of EPA and DHA fortification on the oxidation stability of caprine milk infant formula analogs ADSA/ASAS Joint Meeting.
  • Mehta, B. M., & Deeth, H. C. (2016). Blocked lysine in dairy products: Formation, occurrence, analysis, and nutritional implications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 206–218. https://doi.org/10.1111/1541-4337.12178
  • Nasirpour, A., Scher, J., & Desobry, S. (2006). Baby foods: Formulations and interactions (a review). Critical Reviews in Food Science and Nutrition, 46(8), 665–681. https://doi.org/10.1080/10408390500511896
  • Nunes, L., Martins, E., Tuler Perrone, Í., & Fernandes de Carvalho, A. (2019). The Maillard reaction in powdered infant formula. Journal of Food and Nutrition Research, 7(1), 33–40. https://doi.org/10.12691/jfnr-7-1-5
  • Perez-Locas, C., & Yaylayan, V. A. (2010). The Maillard reaction and food quality deterioration. In L. H. Skibsted, J. Risbo, & M. L. Andersen (Eds.), Chemical deterioration and physical instability of food and beverages (pp. 70–94). https://doi.org/10.1533/9781845699260.1.70
  • Phosanam, A., Chandrapala, J., Huppertz, T., Adhikari, B., & Zisu, B. (2020). Changes in physicochemical and surface characteristics in model infant milk formula powder (imf) during storage. Drying Technology, 39(15), 2119–2129. https://doi.org/10.1080/07373937.2020.1755978
  • Ramirez-Jimenez, A., Garcia-Villanova, B., & Guerra-Hernandez, E. J. (2004). Nonenzymatic browning during storage of infant cereals. Cereal Chemistry, 81(3), 399–403. https://doi.org/10.1094/CCHEM.2004.81.3.399
  • Rückold, S., Grobecker, K. H., & Isengard, H. D. (2000). Determination of the contents of water and moisture in milk powder. Fresenius’ Journal of Analytical Chemistry, 368(5), 522–527. https://doi.org/10.1007/s002160000511
  • Tham, T. W. Y., Xu, X., Yeoh, A. T. H., & Zhou, W. (2017). Investigation of caking by fat bridging in aged infant formula. Food Chemistry, 218, 30–39. https://doi.org/10.1016/j.foodchem.2016.09.043
  • Tham, T. W. Y., Yeoh, A. T. H., & Zhou, W. (2017). Characterisation of aged infant formulas and physicochemical changes. Food Chemistry, 219, 117–125. https://doi.org/10.1016/j.foodchem.2016.09.107
  • Walshe, E. J., O’Regan, J., & O’Mahony, J. A. (2021). Influence of protein content and profile on the processing characteristics and physical properties of model infant formula powders. International Journal of Dairy Technology, 74(3), 592–599. https://doi.org/10.1111/1471-0307.12788
  • Wu, F. Y., Chen, F., Pu, Y. Z., Qian, F., Leng, Y. B., Mu, G. Q., & Zhu, X. M. (2022). Effects of soy lecithin concentration on the physicochemical properties of whey protein isolate, casein-stabilised simulated infant formula emulsion and their corresponding microcapsules. International Journal of Dairy Technology, 75(3), 513–526. https://doi.org/10.1111/1471-0307.12861
  • Xing, Q., Fu, X., Liu, Z., Cao, Q., & You, C. (2021). Contents and evolution of potential furfural compounds in milk-based formula, ultra-high temperature milk and pasteurised yoghurt. International Dairy Journal, 120, 105086. https://doi.org/10.1016/j.idairyj.2021.105086
  • Yuhas, R., Pramuk, K., & Lien, E. L. (2006). Human milk fatty acid composition from nine countries varies most in DHA. Lipids, 41(9), 851–858. https://doi.org/10.1007/s11745-006-5040-7
  • Zhu, R. G., Cheng, H., Li, L., Erichsen, H. R., Petersen, M. A., Soerensen, J., & Skibsted, L. H. (2017). Temperature effect on formation of advanced glycation end products in infant formula milk powder. International Dairy Journal, 77, 1–9. https://doi.org/10.1016/j.idairyj.2017.09.005
  • Zou, L., Pande, G., & Akoh, C. C. (2016). Infant formula fat analogs and human milk fat: New focus on infant developmental needs. Annual Review of Food Science and Technology, 7(1), 139–165. https://doi.org/10.1146/annurev-food-041715-033120