295
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reducing blood lipid behavior in vivo based dark brick tea intake

Pages 781-788 | Received 21 Sep 2023, Accepted 30 Nov 2023, Published online: 13 Dec 2023

References

  • Bing, S., Zang, Y., Li, Y., Zhang, B., Mo, Q., Zhao, X., & Yang, C. (2022). A combined approach using slightly acidic electrolyzed water and tea polyphenols to inhibit lipid oxidation and ensure microbiological safety during beef preservation. Meat Science, 183, 108643. https://doi.org/10.1016/j.meatsci.2021.108643
  • Deng, X., Hou, Y., Zhou, H., Li, Y., Xue, Z., Xue, X., Huang, G., Huang, K., He, X., & Xu, W. (2021). Hypolipidemic, anti‐inflammatory, and anti‐atherosclerotic effects of tea before and after microbial fermentation. Food Science & Nutrition, 9(2), 1160–1170. https://doi.org/10.1002/fsn3.2096
  • Dong, L., Qin, C., Li, Y., Wu, Z., & Liu, L. (2022). Oat phenolic compounds regulate metabolic syndrome in high fat diet-fed mice via gut microbiota. Food Bioscience, 50, 101946. https://doi.org/10.1016/j.fbio.2022.101946
  • Duarte, L., Gasaly, N., Poblete-Aro, C., Uribe, D., Echeverria, F., Gotteland, M., & Garcia-Diaz, D. F. (2021). Polyphenols and their anti-obesity role mediated by the gut microbiota: A comprehensive review. Reviews in Endocrine and Metabolic Disorders, 22(2), 367–388. https://doi.org/10.1007/s11154-020-09622-0
  • Feng, Y., Gao, S., Zhu, T., Sun, G., Zhang, P., Huang, Y., Qu, S., Du, X., & Mou, D. (2022). Hawthorn fruit acid consumption attenuates hyperlipidemia-associated oxidative damage in rats. Frontiers in Nutrition, 9, 936229. https://doi.org/10.3389/fnut.2022.936229
  • Guo, W., Pang, Y., Yao, L., Zhao, L., Fan, C., Ke, J., Guo, P., Hao, B., Fu, H., Xie, C., Lin, Q., Wu, H., Sun, L., & Chen, H. (2021). Imaging fibroblast activation protein in liver cancer: A single-center post hoc retrospective analysis to compare [68Ga] Ga-FAPI-04 PET/CT versus MRI and [18F]-FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 48(5), 1604–1617. https://doi.org/10.1007/s00259-020-05095-0
  • He, L. F., Wang, C., Zhang, Y. F., Guo, C. C., Wan, Y., & Li, Y. X. (2022). Effect of Emodin on hyperlipidemia and hepatic lipid metabolism in Zebrafish Larvae fed a high‐cholesterol diet. Chemistry & Biodiversity, 19(2), e202100675. https://doi.org/10.1002/cbdv.202100675
  • Hou, Y., Zhang, Z., Cui, Y., Peng, C., Fan, Y., Tan, C., Wang, Q., Liu, Z., & Gong, J. (2022). Pu-erh tea and theabrownin ameliorate metabolic syndrome in mice via potential microbiota-gut-liver-brain interactions. Food Research International, 162, 112176. https://doi.org/10.1016/j.foodres.2022.112176
  • Hu, S., Luo, L., Bian, X., Liu, R. H., Zhao, S., Chen, Y., Sun, K., Jiang, J., Liu, Z., & Zeng, L. (2022). Pu-erh tea restored circadian rhythm disruption by regulating tryptophan metabolism. Journal of Agricultural and Food Chemistry, 70(18), 5610–5623. https://doi.org/10.1021/acs.jafc.2c01883
  • Hua, J., Xu, Q., Yuan, H., Wang, J., Wu, Z., Li, X., & Jiang, Y. (2021). Effects of novel fermentation method on the biochemical components change and quality formation of Congou black tea. Journal of Food Composition and Analysis, 96, 103751. https://doi.org/10.1016/j.jfca.2020.103751
  • Jia, W.-B., Zhao, Y.-Q., Liao, S.-Y., Li, P.-W., Zou, Y., Chen, S.-X., Chen, W., He, C.-L., Du, X., Zhu, M.-Z., & Xu, W. (2022). Dynamic changes in the diversity and function of bacterial community during black tea processing. Food Research International, 161, 111856. https://doi.org/10.1016/j.foodres.2022.111856
  • Li, D., Cui, Y., Wang, X., Liu, F., & Li, X. (2021). Apple polyphenol extract alleviates lipid accumulation in free‐fatty‐acid‐exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling. Phytotherapy Research, 35(3), 1416–1431. https://doi.org/10.1002/ptr.6902
  • Li, Y., Hao, J., Zhou, J., He, C., Yu, Z., Chen, S., Chen, Y., & Ni, D. (2022). Pile-fermentation of dark tea: Conditions optimization and quality formation mechanism. LWT, 166, 113753. https://doi.org/10.1016/j.lwt.2022.113753
  • Lv, X.-C., Chen, M., Huang, Z.-R., Guo, W.-L., Ai, L.-Z., Bai, W.-D., Yu, X.-D., Liu, Y.-L., Rao, P.-F., & Ni, L. (2021). Potential mechanisms underlying the ameliorative effect of lactobacillus paracasei FZU103 on the lipid metabolism in hyperlipidemic mice fed a high-fat diet. Food Research International, 139, 109956. https://doi.org/10.1016/j.foodres.2020.109956
  • Maron, D. J., Lu, G. P., Cai, N. S., Wu, Z. G., Li, Y. H., Chen, H., Zhu, J. Q., Jin, X. J., Wouters, B. C., & Zhao, J. (2003). Cholesterol-lowering effect of a theaflavin-enriched green tea extract: A randomized controlled trial. Archives of Internal Medicine, 163(12), 1448–1453. https://doi.org/10.1001/archinte.163.12.1448
  • Pan, T., Yan, R., & Chen, Q. (2022). Geographical origin of green tea identification using LASSO and ANOVA. Food Science & Technology, 42, e41922. https://doi.org/10.1590/fst.41922
  • Song, H., Shen, X., Zhou, Y., & Zheng, X. (2021). Black rice anthocyanins alleviate hyperlipidemia, liver steatosis and insulin resistance by regulating lipid metabolism and gut microbiota in obese mice. Food & Function, 12(20), 10160–10170. https://doi.org/10.1039/D1FO01394G
  • Wang, L., Zheng, W., Yang, J., Ali, A., & Qin, H. (2022). Mechanism of astragalus membranaceus alleviating acquired hyperlipidemia induced by high-fat diet through regulating lipid metabolism. Nutrients, 14(5), 954. https://doi.org/10.3390/nu14050954
  • Wang, P., Huang, Y., Ren, J., Rong, Y., Fan, L., Zhang, P., Zhang, X., Xi, J., Mao, S., Su, M., Zhang, B., Bao, G., & Wu, F. (2022). Large-leaf yellow tea attenuates high glucose-induced vascular endothelial cell injury by up-regulating autophagy and down-regulating oxidative stress. Food & Function, 13(4), 1890–1905. https://doi.org/10.1039/D1FO03405G
  • Wu, Y., Sun, H., Yi, R., Tan, F., & Zhao, X. (2021). Anti‐obesity effect of liupao tea extract by modulating lipid metabolism and oxidative stress in high‐fat‐diet‐induced obese mice. Journal of Food Science, 86(1), 215–227. https://doi.org/10.1111/1750-3841.15551
  • Xu, J., Wei, Y., Huang, Y., Weng, X., & Wei, X. (2022). Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Critical Reviews in Food Science and Nutrition, 1–23. https://doi.org/10.1080/10408398.2022.2093327
  • Yang, C., Zhao, Y., An, T., Liu, Z., Jiang, Y., Li, Y., & Dong, C. (2021). Quantitative prediction and visualization of key physical and chemical components in black tea fermentation using hyperspectral imaging. LWT, 141, 110975. https://doi.org/10.1016/j.lwt.2021.110975
  • Yao, Q., Lin, Q., Yan, S., Huang, M., & Chen, L. (2021). Dietary risk assessment of fluoride, lead, chromium, and cadmium through consumption of Tieguanyin tea and white tea. Food Science & Technology, 41(3), 782–789. https://doi.org/10.1590/fst.69220
  • Ye, J., Zhao, Y., Chen, X., Zhou, H., Yang, Y., Zhang, X., Huang, Y., Zhang, N., Lui, E. M., & Xiao, M. (2021). Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice. Food Research International, 144, 110360. https://doi.org/10.1016/j.foodres.2021.110360
  • Yue, S., Peng, C., Zhao, D., Xia, X., Tan, C., Wang, Q., & Gong, J. (2022). Theabrownin isolated from Pu‐erh tea regulates bacteroidetes to improve metabolic syndrome of rats induced by high‐fat, high‐sugar and high‐salt diet. Journal of the Science of Food and Agriculture, 102(10), 4250–4265. https://doi.org/10.1002/jsfa.11777
  • Zhao, R., Xiao, H., Jin, T., Xu, F., Li, Y., Li, H., Zhang, Z., & Zhang, Y. (2021). Naringenin promotes cell autophagy to improve high-fat-diet-induced atherosclerosis in ApoE-/-mice. Brazilian Journal of Medical and Biological Research, 54(4), e9764. https://doi.org/10.1590/1414-431x20209764
  • Zhu, J., Yu, C., Zhou, H., Wei, X., & Wang, Y. (2021). Comparative evaluation for phytochemical composition and regulation of blood glucose, hepatic oxidative stress and insulin resistance in mice and HepG2 models of four typical Chinese dark teas. Journal of the Science of Food and Agriculture, 101(15), 6563–6577. https://doi.org/10.1002/jsfa.11328