485
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of the acid hydrolysis process for the extraction of Rosa roxburghii Tratt-bound phenols and antioxidant, α-glucosidase and lipase inhibitory activities in vitro

, ORCID Icon, , &
Article: 2294994 | Received 11 Apr 2023, Accepted 10 Dec 2023, Published online: 16 Jan 2024

References

  • Ademosun, A. O., Oboh, G., Passamonti, S., Tramer, F., Ziberna, L., Boligon, A. A., & Athayde, M. L. (2015). Phenolics from grapefruit peels inhibit HMG-CoA reductase and angiotensin-I converting enzyme and show antioxidative properties in endothelial EA.Hy 926 cells. Food Science and Human Wellness, 4(2), 80–12. https://doi.org/10.1016/j.fshw.2015.05.002
  • Ak, T., & Gülçin, İ. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174(1), 27–37. https://doi.org/10.1016/j.cbi.2008.05.003
  • Alu’datt, M. H., Rababah, T., Alhamad, M. N., Al-Mahasneh, M. A., Ereifej, K., Al-Karaki, G., Al-Duais, M., Andrade, J. E., Tranchant, C. C., Kubow, S., & Ghozlan, K. A. (2017). Profiles of free and bound phenolics extracted from citrus fruits and their roles in biological systems: Content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food & Function, 8(9), 3187–3197. https://doi.org/10.1039/c7fo00212b
  • Bustanji, Y., Issa, A., Mohammad, M., Hudaib, M., Tawah, K., Alkhatib, H., Almasri, I., & Al-Khalidi, B. (2010). Inhibition of hormone sensitive lipase and pancreatic lipase by Rosmarinus officinalis extract and selected phenolic constituents. Journal of Medicinal Plants Research, 4(21), 2235–2242. https://doi.org/10.2147/DDDT.S7773
  • Chen, Y., Chen, Z., Guo, Q., Gao, X., Ma, Q., Xue, Z., Ferri, N., Zhang, M., & Chen, H. (2019). Identification of ellagitannins in the unripe fruit of Rubus Chingii Hu and evaluation of its potential antidiabetic activity. Journal of Agricultural and Food Chemistry, 67(25), 7025–7039. https://doi.org/10.1021/acs.jafc.9b02293
  • Chen, Y., Huang, J., Hu, J., Yan, R., & Ma, X. (2019). Comparative study on the phytochemical profiles and cellular antioxidant activity of phenolics extracted from barley malts processed under different roasting temperatures. Food & Function, 10(4), 2176–2185. https://doi.org/10.1039/c9fo00168a
  • de Camargo, A. C., Regitano d’Arce, M. A. B., & Shahidi, F. (2017). Phenolic profile of peanut by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities. Journal of the American Oil Chemists’ Society, 94(7), 959–971. https://doi.org/10.1007/s11746-017-2996-9
  • Dong, R., Yu, Q., Liao, W., Liu, S., He, Z., Hu, X., Chen, Y., Xie, J., Nie, S., & Xie, M. (2021). Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity. Food Chemistry, 339, 127879. https://doi.org/10.1016/j.foodchem.2020.127879
  • Ghadimi, M., Foroughi, F., Hashemipour, S., Rashidi Nooshabadi, M., Ahmadi, M. H., Ahadi Nezhad, B., & Khadem Haghighian, H. (2021). Randomized double-blind clinical trial examining the ellagic acid effects on glycemic status, insulin resistance, antioxidant, and inflammatory factors in patients with type 2 diabetes. Phytotherapy Research: PTR, 35(2), 1023–1032. https://doi.org/10.1002/ptr.6867
  • He, J. Y., Zhang, Y. H., Ma, N., Zhang, X. L., Liu, M. H., & Fu, W. M. (2016). Comparative analysis of multiple ingredients in Rosa roxburghii and R. sterilis fruits and their antioxidant activities. Journal of Functional Foods, 27, 29–41. https://doi.org/10.1016/j.jff.2016.08.058
  • Huang, D., Li, C., Chen, Q., Xie, X., Fu, X., Chen, C., Huang, Q., Huang, Z., & Dong, H. (2022). Identification of polyphenols from Rosa roxburghii Tratt pomace and evaluation of in vitro and in vivo antioxidant activity. Food Chemistry, 377, 131922. https://doi.org/10.1016/j.foodchem.2021.131922
  • Irakli, M., Kleisiaris, F., Kadoglidou, K., & Katsantonis, D. (2018). Optimizing extraction conditions of free and bound phenolic compounds from rice by-products and their antioxidant effects. Foods, 7(6), 93. https://doi.org/10.3390/foods7060093
  • Jiang, S., Deng, N., Zheng, B., Li, T., & Liu, R. H. (2021). Rhodiola extract promotes longevity and stress resistance of Caenorhabditis elegans via DAF-16 and SKN-1. Food & Function, 12(10), 4471–4483. https://doi.org/10.1039/d0fo02974b
  • Justino, A. B., Miranda, N. C., Franco, R. R., Martins, M. M., Silva, N. M. D., & Espindola, F. S. (2018). Annona muricata Linn. Leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomedicine & Pharmacotherapy, 100, 83–92. https://doi.org/10.1016/j.biopha.2018.01.172
  • Kalita, D., Holm, D. G., LaBarbera, D. V., Petrash, J. M., Jayanty, S. S., & Li, X.-Q. (2018). Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLOS ONE, 13(1), e0191025. https://doi.org/10.1371/journal.pone.0191025
  • Kim, M. H., Jo, S. H., Jang, H. D., Lee, M. S., & Kwon, Y.-I. (2010). Antioxidant activity and α-glucosidase inhibitory potential of onion (Allium cepa L.) extracts. Food Science and Biotechnology, 19(1), 159–164. https://doi.org/10.1007/s10068-010-0022-1
  • Liang, L., Wang, T., Cai, Y., He, W., Sun, P., Li, Y., Huang, Q., Taglialatela-Scafati, O., Wang, H., & Guo, Y. (2014). Brominated polyunsaturated lipids from the Chinese sponge Xestospongia testudinaria as a new class of pancreatic lipase inhibitors. European Journal of Medicinal Chemistry, 79, 290–297. https://doi.org/10.1016/j.ejmech.2014.04.003
  • Luo, J., Zhang, P., Li, S., & Shah, N. P. (2016). Antioxidant, antibacterial, and antiproliferative activities of free and bound phenolics from peel and flesh of fuji apple. Journal of Food Science, 81(7), M1735–1742. https://doi.org/10.1111/1750-3841.13353
  • Lu, W.-R., Pan, D., Chen, J.-W., Chi, C.-D., & Chen, J.-C. (2015). Study on the ultrasonic-assisted extraction of the bound phenolics from quince peer. The Food Industry, 36(8), 86–90.
  • Marella, S., Hema, K., Shameer, S., & Prasad, T. N. V. K. V. (2020). Nano-ellagic acid: Inhibitory actions on aldose reductase and α-glucosidase in secondary complications of diabetes, strengthened by in silico docking studies. Biotechnology, 10(10), 439. https://doi.org/10.1007/s13205-020-02411-1
  • Martinez-Gonzalez, A. I., Alvarez-Parrilla, E., Díaz-Sánchez, Á. G., de la Rosa, L. A., Núñez-Gastélum, J. A., Vazquez-Flores, A. A., & Gonzalez-Aguilar, G. A. (2017). In vitro inhibition of pancreatic lipase by polyphenols: a kinetic, fluorescence spectroscopy and molecular docking study. Food Technology and Biotechnology, 55(4), 519–530. https://doi.org/10.17113/ftb.55.04.17.5138
  • Patil, M., Patil, R., Bhadane, B., Mohammad, S., & Maheshwari, V. (2017). Pancreatic lipase inhibitory activity of phenolic inhibitor from endophytic diaporthe arengae. Biocatalysis and Agricultural Biotechnology, 10, 234–238. https://doi.org/10.1016/j.bcab.2017.03.013
  • Peng, H., Li, W., Li, H., Deng, Z., & Zhang, B. (2017). Extractable and non-extractable bound phenolic compositions and their antioxidant properties in seed coat and cotyledon of black soybean (Glycinemax (L.) merr). Journal of Functional Foods, 32, 296–312. https://doi.org/10.1016/j.jff.2017.03.003
  • Prakash, O., Baskaran, R., & Kudachikar, V. B. (2019). Characterization, quantification of free, esterified and bound phenolics in Kainth (Pyrus pashia Buch.-ham. Ex D.Don) fruit pulp by UPLC-ESI-HRMS/MS and evaluation of their antioxidant activity. Food Chemistry, 299, 125114. https://doi.org/10.1016/j.foodchem.2019.125114
  • Rahim, A. T. M. A., Takahashi, Y., & Yamaki, K. (2015). Mode of pancreatic lipase inhibition activity in vitro by some flavonoids and non-flavonoid polyphenols. Food Research International, 75, 289–294. https://doi.org/10.1016/j.foodres.2015.05.017
  • Saura-Calixto, F. (2012). Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60(45), 11195–11200. https://doi.org/10.1021/jf303758j
  • Seyedan, A., Alshawsh, M. A., Alshagga, M. A., Koosha, S., & Mohamed, Z. (2015). Medicinal plants and their inhibitory activities against pancreatic lipase: A review. Evidence-Based Complementary and Alternative Medicine, 14, 1–13. https://doi.org/10.1155/2015/973143
  • Sinan, K. I., Zengin, G., Fiorentino, A., D’Abrosca, B., Ak, G., Lobine, D., Etienne, O. K., Subratty, A. H., & Mahomoodally, M. F. (2021). Biological insights and NMR metabolic profiling of different extracts of spermacoce verticillata (L.) G. Mey. Chemistry & Biodiversity, 18(10), e2100371. https://doi.org/10.1002/cbdv.202100371
  • Su, J., Fu, X., Huang, Q., Liu, G., & Li, C. (2022). Phytochemical profile, bioactivity and prebiotic potential of bound polyphenols released from Rosa roxburghii fruit pomace dietary fiber during in vitro digestion and fermentation. Food & Function, 17(17), 8880–8891. https://doi.org/10.1039/D2FO00823H
  • Sun, J., Chu, Y. F., Wu, X., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50(25), 7449–7454. https://doi.org/10.1021/jf0207530
  • Sun, Y., Deng, Z., Liu, R., Zhang, H., Zhu, H., Jiang, L., & Tsao, R. (2020). A comprehensive profiling of free, conjugated and bound phenolics and lipophilic antioxidants in red and green lentil processing by-products. Food Chemistry, 325, 126925. https://doi.org/10.1016/j.foodchem.2020.126925
  • Sun, S., Huang, S., Shi, Y., Shao, Y., Qiu, J., Sedjoah, R.-C.-A.-A., Yan, Z., Ding, L., Zou, D., & Xin, Z. (2021). Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chemistry, 351, 129232. https://doi.org/10.1016/j.foodchem.2021.129232
  • Tan, Y., Chang, S. K. C., & Zhang, Y. (2017). Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chemistry, 214, 259–268. https://doi.org/10.1016/j.foodchem.2016.06.100
  • Tang, Y., Zhang, B., Li, X., Chen, P. X., Zhang, H., Liu, R., & Tsao, R. (2016). Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects. Journal of Agricultural and Food Chemistry, 64(8), 1712–1719. https://doi.org/10.1021/acs.jafc.5b05761
  • Vijayaraj, P., Nakagawa, H., & Yamaki, K. (2019). Cyanidin and cyanidin-3-glucoside derived from Vigna unguiculata act as noncompetitive inhibitors of pancreatic lipase. Journal of Food Biochemistry, 43(3), e12774. https://doi.org/10.1111/jfbc.12774
  • Wang, W., Chen, W., Yang, Y., Liu, T., Yang, H., & Xin, Z. (2015). New phenolic compounds from Coreopsis tinctoria Nutt. And their antioxidant and angiotensin i-converting enzyme inhibitory activities. Journal of Agricultural and Food Chemistry, 63(1), 200–207. https://doi.org/10.1021/jf504289g
  • Wang, Z., Li, S., Ge, S., & Lin, S. (2020). Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. Journal of Agricultural and Food Chemistry, 68(11), 3330–3343. https://doi.org/10.1021/acs.jafc.9b06574
  • Wang, L., Lv, M., An, J., Fan, X., Dong, M., Zhang, S., Wang, J., Wang, Y., Cai, Z., & Fu, Y. (2021a). Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review. Food & Function, 12(4), 1432–1451. https://doi.org/10.1039/d0fo02603d
  • Wang, Y., Ouyang, F., Teng, C., & Qu, J. (2021b). Optimization for the extraction of polyphenols from Inonotus obliquus and its antioxidation activity. Preparative Biochemistry & Biotechnology, 51(9), 852–859. https://doi.org/10.1080/10826068.2020.1864642
  • Xu, L., Yang, H. Z., Li, C. Z., Liu, S. Y., Zhao, H. D., Liao, X. J., & Zhao, L. (2023). Composition analysis of free and bound phenolics in chestnut rose (Rosa roxburghii Tratt.) fruit by UHPLC-IM-QTOF and UPLC-QQQ. LWT, 185, 115125. https://doi.org/10.1016/j.lwt.2023.115125
  • Zelena, E., Dunn, W. B., Broadhurst, D., Francis McIntyre, S., Carroll, K. M., Begley, P., O’Hagan, S., Knowles, J. D., Halsall, A., HUSERMET Consortium, Wilson, I. D., & Kell, D. B. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81(4), 1357–1364.
  • Zhang, Y., Bai, B., Yan, Y., Liang, J., & Guan, X. (2022). Bound polyphenols from red quinoa prevailed over free polyphenols in reducing postprandial blood glucoserises by inhibiting α-glucosidase activity and starch digestion. Nutrients, 14(4), 728. https://doi.org/10.3390/nu14040728
  • Zhang, L., Han, Z., & Granato, D. (2021). Polyphenols in foods: Classification, methods of identification, and nutritional aspects in human health. Advances in Food and Nutrition Research, 98, 1–33. https://doi.org/10.1016/bs.afnr.2021.02.004
  • Zhang, D., Liu, J. M., Ruan, J. G., Jiang, Z. J., Gong, F. Y., Lei, W. J., Wang, X. Y., Zhao, J., Meng, Q. Y., Xu, M., Tang, X., & Li, H. J. (2023). Combination of millet pepper and garlic water extracts improves the antioxidant capability of myofibrillar protein under malondialdehyde-induced oxidative modification. LWT, 174, 114472. https://doi.org/10.1016/j.lwt.2023.114472
  • Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33–42. https://doi.org/10.1016/j.cofs.2016.02.002
  • Zheng, Y., Liu, S., Xie, J., Chen, Y., Dong, R., Zhang, X., Liu, S., Xie, J., Hu, X., & Yu, Q. (2020). Antioxidant, α-amylase and α-glucosidase inhibitory activities of bound polyphenols extracted from mung bean skin dietary fiber. LWT, 132, 109943. https://doi.org/10.1016/j.lwt.2020.109943
  • Zhou, B., Wang, F.-F., & Jang, H.-D. (2013). Enhanced antioxidant and antidiabetic activities of barley and wheat after soaking with tea catechin. Food Science and Biotechnology, 22(6), 1753–1761. https://doi.org/10.1007/s10068-013-0277-4
  • Zhou, D., Zhong, J., Huang, Y., & Cheng, Y. (2023). Effect of free and bound polyphenols from Rosa roxburghii Tratt distiller’s grains on moderating fecal microbiota. Food Chemistry: X, 19, 100747. https://doi.org/10.1016/j.fochx.2023.100747
  • Zhu, L., Li, W., Deng, Z., Li, H., & Zhang, B. (2020). The composition and antioxidant activity of bound phenolics in three legumes, and their metabolism and bioaccessibility of gastrointestinal tract. Foods, 9(12), 1816. https://doi.org/10.3390/foods9121816
  • Zhu, H., Liu, S., Yao, L., Wang, L., & Li, C. (2019). Free and bound phenolics of buckwheat varieties: HPLC characterization, antioxidant activity, and inhibitory potency towards α-glucosidase with molecular docking analysis. Antioxidants, 8(12), 606. https://doi.org/10.3390/antiox8120606