911
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Beetroot (Beta vulgaris L. var. conditiva Alef.) pretreated by freeze-thaw: influence of drying methods on the quality characteristics

, , , , &
Pages 1-12 | Received 08 May 2023, Accepted 24 Aug 2023, Published online: 04 Jan 2024

References

  • Alvarez-Parrilla, E., de la Rosa, L. A., Amarowicz, R., & Shahidi, F. (2011). Antioxidant activity of fresh and processed Jalapeño and Serrano peppers. Journal of Agricultural and Food Chemistry, 59(1), 163–173. https://doi.org/10.1021/jf103434u
  • An, K., Zhao, D., Wang, Z., Wu, J., Xu, Y., & Xiao, G. (2016). Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chemistry, 197, 1292–1300. https://doi.org/10.1016/j.foodchem.2015.11.033
  • Ando, Y., Hagiwara, S., Nabetani, H., Sotome, I., Okunishi, T., Okadome, H., Orikasa, T., & Tagawa, A. (2019). Improvements of drying rate and structural quality of microwave-vacuum dried carrot by freeze-thaw pretreatment. LWT-Food Science and Technology, 100, 294–299. https://doi.org/10.1016/j.lwt.2018.10.064
  • Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT-Food Science and Technology, 71, 40–46. https://doi.org/10.1016/j.lwt.2016.03.019
  • Bassey, E. J., Sun, D. W., Esua, O. J., & Cheng, J. H. (2022). Effects of freeze-thaw pretreatments on the drying characteristics, physicochemical and phytochemical composition of red dragon fruit during mid- and near-infrared drying. Drying Technology, 41(4), 561–576. https://doi.org/10.1080/07373937.2022.2109047
  • Bazaria, B., & Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi Society of Agricultural Sciences, 17(4), 408–415. https://doi.org/10.1016/j.jssas.2016.09.007
  • Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
  • Bozkir, H., & Ergün, A. R. (2020). Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. LWT-Food Science and Technology, 131(12), 109704. https://doi.org/10.1016/j.lwt.2020.109704
  • Cheigh, H. S., Um, S. H., & Lee, C. Y. (1995). Antioxidant characteristics of melanin-related products from enzymatic browning reaction of catechin in a model system. ACS Symposium Series, 600, 200–208. https://doi.org/10.1021/bk-1995-0600.ch016
  • Chen, Q., Li, Z., Bi, J., Zhou, L., Yi, J., & Wu, X. (2017). Effect of hybrid drying methods on physicochemical, nutritional and antioxidant properties of dried black mulberry. LWT-Food Science and Technology, 80(3), 178–184. https://doi.org/10.1016/j.lwt.2017.02.017
  • Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., & Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry, 272, 192–200. https://doi.org/10.1016/j.foodchem.2018.08.022
  • Cui, Z. W., Xu, S. Y., & Sun, D. W. (2004). Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of Chinese chive leaves. Drying Technology, 22(3), 563–575. https://doi.org/10.1081/DRT-120030001
  • Dai, Y., Li, M., Li, M., Wang, Z., Lu, J., Zhou, Y., Meng, W., Chen, S., & Li, Q. (2021). Quality study of the preparation of virgin brown sugar powder by vacuum drying. Sugar Technology, 23(4), 1171–1182. https://doi.org/10.1007/s12355-021-00968-6
  • De Oliveira, S. P. A., Do Nascimento, H. M. A., Sampaio, K. B., & de Souza, E. L. (2020). A review on bioactive compounds of beet (Beta vulgaris L. subsp. vulgaris) with special emphasis on their beneficial effects on gut microbiota and gastrointestinal health. Critical Reviews in Food Science and Nutrition, 61(12), 2022–2033. https://doi.org/10.1080/10408398.2020.1768510
  • Dhiman, A., Suhag, R., Chauhan, D. S., Thakur, D., Chhikara, S., & Prabhakar, P. K. (2021). Status of beetroot processing and processed products: Thermal and emerging technologies intervention. Trends in Food Science and Technology, 114, 443–458. https://doi.org/10.1016/j.tifs.2021.05.042
  • Feng, Y., Tan, C. P., Zhou, C., Yagoub, A. E. A., Xu, B., Sun, Y., Ma, H., Xu, X., & Yu, X. (2020). Effect of freeze-thaw cycles pretreatment on the vacuum freeze-drying process and physicochemical properties of the dried garlic slices. Food Chemistry, 324, 126883. https://doi.org/10.1016/j.foodchem.2020.126883
  • Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461–470. https://doi.org/10.1016/j.jfoodeng.2010.01.029
  • Fu, Y., Shi, J., Xie, S. Y., Zhang, T. Y., Soladoye, O. P., & Aluko, R. E. (2020). Red beetroot betalains: Perspectives on extraction, processing, and potential health benefits. Journal of Agricultural and Food Chemistry, 68(42), 11595–11611. https://doi.org/10.1021/acs.jafc.0c04241
  • Gong, H., Wang, T., Hua, Y., Wang, W. D., Shi, C., Xu, H. X., Li, L. L., Zhang, D. P., Sun, Y. E., & Yu, N. N. (2022). Garlic varieties and drying methods affected the physical properties, bioactive compounds and antioxidant capacity of dried garlic powder. CyTA-Journal of Food, 20(1), 111–119. https://doi.org/10.1080/19476337.2022.2093400
  • Hadipour, E., Taleghani, A., Tayarani-Najaran, N., & Tayarani-Najaran, Z. (2020). Biological effects of red beetroot and betalains: A review. Phytotherapy Research, 34(8), 1847–1867. https://doi.org/10.1002/ptr.6653
  • Hamid, M. G., & Nour, A. A. A. M. (2018). Effect of different drying methods on quality attributes of beetroot (Beta vulgaris) slices. World Journal of Science, Technology and Sustainable Development, 15(3), 287–298. https://doi.org/10.1108/WJSTSD-11-2017-0043
  • Janiszewska-Turak, E., Rybak, K., Grzybowska, E., Konopka, E., & Witrowa-Rajchert, D. (2021). The influence of different pretreatment methods on color and pigment change in beetroot products. Molecules, 26(12), 3683. https://doi.org/10.3390/molecules26123683
  • Köprüalan, Ö., Altay, Ö., Bodruk, A., & Kaymak-Ertekin, F. (2021). Effect of hybrid drying method on physical, textural and antioxidant properties of pumpkin chips. Journal of Food Measurement and Characterization, 15(4), 2995–3004. https://doi.org/10.1007/s11694-021-00866-1
  • Lechner, J. F., & Stoner, G. D. (2019). Red beetroot and betalains as cancer chemopreventative agents. Molecules, 24(8), 1602–1612. https://doi.org/10.3390/molecules24081602
  • Lim, Y. Y., & Murtijaya, J. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Science and Technology, 40(9), 1664–1669. https://doi.org/10.1016/j.lwt.2006.12.013
  • Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International, 31(2), 111–117. https://doi.org/10.1016/S0963-9969(98)00070-2
  • Liu, Y., Sabadash, S., Duan, Z., & Deng, C. (2022). The influence of different drying methods on the quality attributes of beetroots. Eastern-European Journal of Enterprise Technologies, 3(11 (117)), 60–68. https://doi.org/10.15587/1729-4061.2022.258049
  • Liu, Z. L., Xie, L., Zielinska, M., Pan, Z., Wang, J., Deng, L. Z., Wang, H., & Xiao, H. W. (2021). Pulsed vacuum drying enhances drying of blueberry by altering micro-, ultrastructure and water status and distribution. LWT-Food Science and Technology, 142(8), 111013. https://doi.org/10.1016/j.lwt.2021.111013
  • Marfil, P. H. M., Santos, E. M., & Telis, V. R. N. (2008). Ascorbic acid degradation kinetics in tomatoes at different drying conditions. LWT-Food Science and Technology, 41(9), 1642–1647. https://doi.org/10.1016/j.lwt.2007.11.003
  • Mella, C., Vega-Gálvez, A., Uribe, E., Pastena, A., Mejias, N., & Quispe-Fuentes, I. (2022). Impact of vacuum drying on drying characteristics and functional properties of beetroot (Beta vulgaris). Applied Food Research, 2(1), 100120. https://doi.org/10.1016/j.afres.2022.100120
  • Mitra, J., Shrivastava, S. L., & Rao, P. S. (2011). Process optimisation of vacuum drying of onion slices. Czech Journal of Food Sciences, 29(6), 586–594. https://doi.org/10.17221/162/2010-CJFS
  • Nistor, O. V., Seremet, L., Andronoiu, D. G., Rudi, L., & Botez, E. (2017). Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chemistry, 236, 59–67. https://doi.org/10.1016/j.foodchem.2017.04.129
  • Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Cánovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT-Food Science and Technology, 68, 98–104. https://doi.org/10.1016/j.lwt.2015.12.029
  • Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60. https://doi.org/10.1007/s11947-012-0867-9
  • Paula, R. R., Vimercati, W. C., Araújo, C. D. S., Macedo, L. L., Teixeira, L. J. Q., & Saraiva, S. H. (2020). Drying kinetics and physicochemical properties of whey dried by foam mat drying. Journal of Food Processing and Preservation, 44(10), e14796. https://doi.org/10.1111/jfpp.14796
  • Piotrowski, D., Kostyra, E., Grzegory, P., & Janiszewska-Turak, E. (2021). Influence of drying methods on the structure, mechanical and sensory properties of strawberries. European Food Research and Technology, 247(8), 1859–1867. https://doi.org/10.1007/s00217-021-03682-5
  • Prieto-Santiago, V., Cavia, M., Alonso-Torre, S., & Carrillo, C. (2020). Relationship between color and betalain content in different thermally treated beetroot products. Journal of Food Science and Technology, 57(9), 3305–3313. https://doi.org/10.1007/s13197-020-04363-z
  • Ravichandran, K., Saw, N., Mohdaly, A., Gabr, A., Kastell, A., Riedel, H., Cai, Z., Knorr, D., & Smetanska, I. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670–675. https://doi.org/10.1016/j.foodres.2011.07.002
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Samoticha, J., Wojdyło, A., & Lech, K. (2016). The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT-Food Science and Technology, 66, 484–489. https://doi.org/10.1016/j.lwt.2015.10.073
  • Seremet, L., Nistor, O. V., Andronoiu, D. G., Mocanu, G. D., Barbu, V. V., Maidan, A., Rudi, L., & Botez, E. (2020). Development of several hybrid drying methods used to obtain red beetroot powder. Food Chemistry, 310, 25637. https://doi.org/10.1016/j.foodchem.2019.125637
  • Souza, V. R. D., Pereira, P. A. P., Silva, T. L. T. D., Lima, L. C. D. O., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156, 362–368. https://doi.org/10.1016/j.foodchem.2014.01.125
  • Srikanth, K. S., Sharanagat, V. S., Kumar, Y., Bhadra, R., Singh, L., Nema, P. K., & Kumar, V. (2020). Convective drying and quality attributes of elephant foot yam (Amorphophallus paeoniifolius). LWT-Food Science and Technology, 99, 8–16. https://doi.org/10.1016/j.lwt.2018.09.049
  • Stintzing, F. C., Herbac, K. M., Mosshammer, M. R., Carle, R., Yi, W., Sellappan, S., Akoh, C. C., Bunch, R., & Felker, P. (2005). Color, betalain pattern, and antioxidant properties of cactus pear (opuntia spp.) clones. Journal of Agricultural and Food Chemistry, 53(2), 442–451. https://doi.org/10.1021/jf048751y
  • Székely, D., Vidák, K., Furulyás, D., Ribárszki, K., & Stéger-Máté, M. (2019). Effect of drying methods on physicochemical parameters of different red beetroots (Beta vulgaris L.) species. Periodica Polytechnica Chemical Engineering, 63(3), 485–490. https://doi.org/10.3311/PPch.13104
  • Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products—a review. Biosystems Engineering, 98(1), 1–16. https://doi.org/10.1016/j.biosystemseng.2007.06.006
  • Valadez-Carmona, L., Cortez-García, R. M., Plazola-Jacinto, C. P., Necoechea-Mondragón, H., & Ortiz-Moreno, A. (2016). Effect of microwave drying and oven drying on the water activity, color, phenolic compounds content and antioxidant activity of coconut husk (cocos nucifera L.). Journal of Food Science and Technology, 53(9), 3495–3501. https://doi.org/10.1007/s13197-016-2324-7
  • Varshney, K., & Mishra, K. (2022). An analysis of health benefits of beetroot. International Journal of Innovative Research in Engineering and Management, 9(1), 207–210. https://doi.org/10.55524/ijirem.2022.9.1.39
  • Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., Höglinger, O., & Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46–55. https://doi.org/10.1016/j.jfca.2015.03.005
  • Wu, X. F., Zhang, M., Adhikari, B., & Sun, J. C. (2017). Recent developments in novel freezing and thawing technologies applied to foods. Critical Reviews in Food Science and Nutrition, 57(17), 3620–3631. https://doi.org/10.1080/10408398.2015.1132670
  • Xie, L., Zheng, Z. A., Mujumdar, A. S., Fang, X. M., Wang, J., Zhang, Q., Ma, Q., Xiao, H. W., Yan-Hong Liu, Y. H., & Gao, Z. J. (2018). Pulsed vacuum drying (PVD) of wolfberry: Drying kinetics and quality attributes. Drying Technology, 36(12), 1501–1514. https://doi.org/10.1080/07373937.2017.1414055
  • Zhang, J., Zhou, D., Zhong, X., Pei, Z., Tian, Y., Xiang, D., Cao, J., Shen, X., & Li, C. (2020). Quality and protein degradation of golden pompano (Trachinotus blochii) fillets during four drying methods. LWT-Food Science and Technology, 130, 109638. https://doi.org/10.1016/j.lwt.2020.109638
  • Zhang, L., Yu, X., Arun S, M., & Zhou, C. (2022). Effect of freeze-thaw pretreatment combined with variable temperature on infrared and convection drying of lotus root. LWT-Food Science and Technology, 154, 112804. https://doi.org/10.1016/j.lwt.2021.112804
  • Zhang, Y., Sun, B. H., Pei, Y. P., Vidyarthi, S. K., Zhang, W. P., Zhang, W. K., Ju, H. Y., Gao, Z. J., & Xiao, H. W. (2021). Vacuum-steam pulsed blanching (VSPB): An emerging blanching technology for beetroot. LWT-Food Science and Technology, 147(5), 111532. https://doi.org/10.1016/j.lwt.2021.111532
  • Zielinska, M., Sadowski, P., & Błaszczak, W. (2015). Freezing/Thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.). LWT-Food Science and Technology, 62(1), 555–563. https://doi.org/10.1016/j.lwt.2014.08.002